Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2)

Object of Amendment

Rules for the Survey and Construction of Steel Ships Part C Guidance for the Survey and Construction of Steel Ships Part C

Reason for Amendment

Part C of the Rules and Guidance for the Survey and Construction of Steel Ships was revised comprehensively in July 2022, and there are plans to continuously review it with the aim of improving their practicality and usability based on various feedback from relevant industry members.

Additionally, insights gained through research and development will be appropriately reflected in Part C to enhance safety and rationality.

Accordingly, relevant requirements are amended to reflect the results of the rule reviews and the research and development outcomes.

Outline of the Amendment

- (1) Revises the composition of requirements regarding hold bulkheads.
- (2) Revises the composition of requirements regarding side frames and clarifies their application.
- (3) Revises the composition of requirements regarding simple girders with the aim of clarifying the requirements.
- (4) Adds harbour condition for longitudinal strength assessments of container carriers.
- (5) Revises the scope of application for correction coefficient for the aspect ratio in the local strength calculation formula of plate members.
- (6) Specifies a simplified method for deriving stress due to hull girder loads as a reference in the early consideration of ship design.
- (7) Revises the simplified formula for the ship's hull centre of gravity to enhance accuracy.
- (8) Revises requirements regarding assessments for double hull structures based on feedback from ships applying Part C.
- (9) Clarifies some definitions and corrects typographical errors.

Effective Date and application

- 1. This draft amendment applies to ships for which the date of contract for construction is on or after the date 6 months from the date of establishment.
- 2. Notwithstanding the provision of preceding 1, this draft amendment may apply, upon request, to ships for which the date of contract for construction is before the effective date.

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance. ID:DH24-07

Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part C HULL CONSTRUCTION AND EQUIPMENT	Part C HULL CONSTRUCTION AND EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
Chapter 1 GENERAL	Chapter 1 GENERAL	Amendment (9) Clarifies some
1.1 General	1.1 General	definitions and corrects typographical errors:
1.1.2 Application	1.1.2 Application	Removes the underlined words because it can be
1.1.2.1 General	1.1.2.1 General	misunderstood that ships
1 The requirements in Part C apply to ships constructed	1 The requirements in Part C apply to ships constructed	to be classed for
of welded steel structures, composed of stiffened plate panels,	of welded steel structures, composed of stiffened plate panels,	restricted service can be
having a length L (as defined in 2.1.2, Part A) of not less than	having a length L (as defined in 2.1.2, Part A) of not less than	excluded from the
90 m. However, the hull structure requirements for ships	90 m, and intended for unrestricted service. However, the hull	application of Part C.
complying with either the following (1) or (2) may be in	structure requirements for ships complying with either the	
accordance with those specified in Part C of the Rules for	following (1) or (2) may be in accordance with those specified	
the Survey and Construction of Steel Ships applicable to ships for which the date of contract for construction was	in Part C of the Rules for the Survey and Construction of Steel Ships applicable to ships for which the date of contract	
before 1 July 2023 (hereinafter referred to as "Old Part C")	for construction was before 1 July 2023 (hereinafter referred	
may be applied.	to as "Old Part C") may be applied.	
(1) Sister ships of ships subject to Old Part C for which	(1) Sister ships of ships subject to Old Part C for which	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
 the date of contract for construction was before 1 January 2025 (2) Ships for which the date of contract for construction is before 1 January 2028 and whose length L_c is less than 200 m. When Old Part C is applied, "Advanced Structural Rules" (abbreviated to ASR) defined in 1.2.1-4, Part A is not to be affixed. 2 Hull construction, equipment and scantlings of ships to be classed for restricted service may be appropriately modified depending on the condition of service in accordance with Annex 1.1 "Special Requirements for Restricted Service". 	 the date of contract for construction was before 1 January 2025 (2) Ships for which the date of contract for construction is before 1 January 2028 and whose length L_c is less than 200 m. When Old Part C is applied, "Advanced Structural Rules" (abbreviated to ASR) defined in 1.2.1-4, Part A is not to be affixed. 2 Hull construction, equipment and scantlings of ships to be classed for restricted service may be appropriately modified depending on the condition of service in accordance with Annex 1.1 "Special Requirements for Restricted Service". 	
1.4 Symbols and Definitions	1.4 Symbols and Definitions	
 1.4.2 Primary Symbols and Units 1.4.2.2 Ship's Main Data Unless otherwise specified, the symbols of a ship's main data and their units used in Part C are those defined in Table 1.4.2-2. 	 1.4.2 Primary Symbols and Units 1.4.2.2 Ship's Main Data Unless otherwise specified, the symbols of a ship's main data and their units used in Part C are those defined in Table 1.4.2-2. 	

Original Amended Remarks Table 1.4.2-2 Ship's Main Data Table 1.4.2-2 Ship's Main Data Amendment (9) Clarifies some Symbol Meaning Unit Symbol Meaning Unit definitions and corrects (Omitted) (Omitted) typographical errors: Emergency ballast draught at midship, which is a Emergency ballast draught at midship, which is a draught at an emergency ballast condition. The draught at an emergency ballast condition. The Adds the definition of emergency ballast condition refers to a ballast emergency ballast condition refers to a ballast bow draught in the TRAL-E condition involving a cargo oil tank loaded with condition involving a cargo oil tank loaded with т T_{BAL-E} т ballast condition ballast water at emergency or heavy weather ballast water at emergency or heavy weather conditions allowable under Regulation 18 of conditions allowable under Regulation 18 of Annex I to the MARPOL Convention. Annex I to the MARPOL Convention. Bow draught in the ballast condition Midship draught in the loading condition to be TBAL-F <u>m</u> T_{LC} т considered Midship draught in the loading condition to be TLC т considered (Omitted) (Omitted) Table 1.4.2-4 Loads Table 1.4.2-4 Loads Amendment (9) Clarifies some Symbol Meaning Unit Symbol Meaning Unit definitions and corrects (Omitted) (Omitted) typographical errors: Design uniform load due to cargoes, Deck load due to unspecified cargoes stores or other equipment loaded on kN/m^2 or stores loaded on general cargo Clarifies the definition kN/m^2 P_{dk} P_{dk} ships and the like deck. of deck load (Omitted) (Omitted) 1.4.2.5 Scantlings 1.4.2.5 Scantlings Unless otherwise specified, the symbols regarding Unless otherwise specified, the symbols regarding scantlings and their units used in Part C are those defined in scantlings and their units used in Part C are those defined in Table 1.4.2-5. Table 1.4.2-5.

Original Remarks Amended Table 1.4.2-5 Scantlings Amendment (9) Clarifies some Symbol Meaning Unit definitions and corrects (Omitted) typographical errors: Distance from the upper edge of the web to the top of the flange for L3 profiles de mm Deletes the definition of (Omitted) d_e because L3 profile is not used in Part C Annex 1.1 **SPECIAL REQUIREMENTS FOR** Annex 1.1 **SPECIAL REQUIREMENTS FOR RESTRICTED SERVICE RESTRICTED SERVICE** An1 General An1 General An1.3.1 General An1.3.1 General For ships having a freeboard length $L_{\rm f}$ no less than 80 (Newly Added) Amendment (1) *m* and not engaged on international voyages are not to comply Revises the composition with the damage stability requirements specified in 2.2.1.1-7, of requirements 2.3.2.1-2 and 2.4.1.1-1, following (1) and (2) are to be met. regarding hold (1) Ships are to have watertight hold bulkheads at bulkheads. reasonable intervals, in addition to the watertight Transferred from Ch.2. bulkheads specified in 2.2.1.1 to 2.2.1.3, so that the For ships not engaged in total number of watertight bulkheads will be no less international voyages than that specified in Table An4. Where the distance with a Lf of 80 m or between two neighbouring bulkheads is less than more that do not satisfy $0.7\sqrt{L_c}$ (m), these two bulkheads are not counted as the requirements two bulkheads. regarding damage stability as stipulated in Where it is impracticable for the ship's trade, the (2)

(Amendment related to Pa	art C of the Rules for Surve	y and Construction of Steel	Ships	(2024 Amendment 2))
					())

Amended	Tart C of the Rules ic	Original	Remarks
	<u>C 1' C ' 1 /</u>	Originai	
number of hold bulkheads of			the SOLAS have been
may be reduced in accordan			transferred from Chapter
into account the effect on the	he transverse strength of		2. In accordance with
the hull.			this change, the
(a) Ships carrying long carg			provision to reduce the
	in ferries and car carriers		total number of
	ad where the required		bulkheads by
number is 5 or less, and	1 2 bulkheads where the		considering flooding
required number is 6 or	more.		into one compartment,
(b) Ships having conveyor	systems for handling		which was originally
<u>cargoes may omit a</u>	ll hold bulkheads, if		specified, has been
necessary.			deleted. Ships with Lf of
(c) Ships other than those s	specified above are, as a		less than 80m are
rule, not regarded as spe	cial type ships.		applied the requirements
			of Pert CS, so there is no
			change.
			change.
	Table An4 Total Number	r of Watertight Bulkheads	Transferred from Ch.2.
$L_C(m)$	Tc	otal number of watertight bulkheads	
not less than less than			
<u>90 102</u>		<u>5</u>	
<u>102</u> <u>123</u>		<u>6</u>	
<u>123</u> <u>143</u>		<u>7</u>	
<u>143</u> <u>165</u>		<u>8</u>	
<u>165 186</u>		<u>9</u>	-
<u>186</u> <u>200</u>		bulkheads arranged in accordance with Notes (1)	-
200	The number of bull	kheads arranged in accordance with Note (1) and (2)	-
$\frac{\text{Notes}}{(1)}$ The shirt has sufficient to			
· · · · ·	ansverse strength of the hull. s are to be deemed appropriate by t	he Society	
(2) The number of bulkfields		ne society.	J

Amended	Original	Remarks
Chapter 2 GENERAL ARRANGEMENT DESIGN	Chapter 2 GENERAL ARRANGEMENT DESIGN	
2.2 Subdivision Arrangement	2.2 Subdivision Arrangement	
2.2.1 Arrangement of Watertight Bulkheads	2.2.1 Arrangement of Watertight Bulkheads	
2.2.1.4 Hold Bulkheads 1 For all ships to satisfy the applicable damage stability requirements, watertight hold bulkheads are to be fitted at reasonable intervals, in addition to the watertight bulkheads specified in 2.2.1.1 to 2.2.1.3. (Deleted)	 2.2.1.4 Hold Bulkheads For ships in the following (1) to (4) to satisfy the applicable damage stability requirements, watertight hold bulkheads are to be fitted at reasonable intervals, in addition to the watertight bulkheads specified in 2.2.1.1 to 2.2.1.3: Ships complying with the requirements in 2.3 (including ships specified in 2.3.1.1(1) to (3)) Tankers in compliance with the requirements of 3.2.2, Part 3 of the Rules for Marine Pollution Prevention Systems Ships carrying liquefied gases in bulk or ships carrying dangerous chemicals in bulk Ships in compliance with the requirements in An2.1, Annex 1.1, Part 2-2 "Additional Requirements for Bulk Carriers under SOLAS Chapter XII" Ships other than those listed in -1 above are to have watertight hold bulkheads at reasonable intervals, in addition to the watertight bulkheads specified in 2.2.1.1 to 2.2.1.3, so that the total number of watertight bulkheads will be no less than that specified in Table 2.2.1-1. Where the distance between two neighbouring bulkheads is less than 0.7√L_c (m), these two bulkheads are not counted as two bulkheads. 	Clarifies that ships which applies to Part C are required to have watertight bulkheads to satisfy the requirements regarding damage stability. Transferred to Annex 1.1, An1.3.1.
(Deleted)	5 where it is impracticable to adhere to -2 above due to	

		//
Amended	Original Original the requirements for the ship's trade, the number of hold bulkheads may be reduced in accordance with one of the following (1) to (3), taking into account the effect of the smaller number of bulkheads on the transverse strength of the hull. Where the number of watertight bulkheads is decreased from that required according to the following (2), an application for the omission of bulkheads stating the reasons for such omission is to be submitted by the shipowner to the Society: (1) The number of bulkheads specified by the requirements of Note (1) or (2) in Table 2.2.1-1. (2) For ships of special types, the number is in accordance with (a), (b) or (c): (a) Ships carrying long cargoes (rails, sheet piles or similar long cargoes), train ferries and car carriers may omit one bulkhead where the required number is 5 or less, and 2 bulkheads where the required number is 6 or more. (b) Ships having conveyor systems for handling cargoes may omit all hold bulkheads, if necessary. (c) Ships other than those specified above are, as a	Remarks
	number is 5 or less, and 2 bulkheads where the required number is 6 or more.(b) Ships having conveyor systems for handling cargoes may omit all hold bulkheads, if necessary.(c) Ships other than those specified above are, as a	
	 <u>rule, not regarded as special type ships.</u> (3) Where special consideration is given for improving the safety of ships by means such as that of a double hull, the arrangement of watertight bulkheads may be different from that required in the Rules. 	

Amended	Original	Remarks
(Deleted)	Table 2.2.1-1 Number of Watertight Bulkheads	Transferred to Annex
	<u><i>L_C(m)</i></u> Total number of watertight bulkheads	1.1, Table An4.
	<u>not</u> <u>less</u>	
	less than	
	<u>than</u>	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	102 123 0 123 0 123 143 7	
	$\frac{125}{143}$ $\frac{145}{165}$ 8	
	<u>165 186 9</u>	
	186 200 The number of bulkheads arranged in accordance	
	with Notes (1) and (2)	
	200 The number of bulkheads arranged in accordance	
	with Note (2)	
	(Notes) (1) The ship has sufficient transverse strength of the hull.	
	(2) The final waterline does not exceed the upper surface of	
	the bulkhead deck at the side of the ship even after any	
	compartment, except the engine room, has been flooded	
	under the load condition corresponding to the summer	
	load water line. The permeability used in flooding	
	calculations is to be in accordance with Tables 2.2.1-2 or 2.2.1-3.	
	2.2.1-3.	

Amended	Origin	al	Remarks	
(Deleted)	Table 2.2.1-2 Permeab	Table 2.2.1-2 Permeability of Cargo Holds		
	Cargo hold condition	<u>Permeability</u>		
	Empty	<u>0.95</u>		
	Loaded with general cargo	0.60		
	Loaded with timber	<u>0.55</u>		
	Loaded with ore	<u>0.50</u>		
	Loaded with cars or containers	$\frac{0.95 - 0.35 \times \frac{V_C}{V_0}}{}$		
	(Notes) V_{C} : Volume (m^{3}) occupied by cars and/or of	aantainawa		
	V_c : Moulded volume (m^3) of the compartment			
(Deleted)	Table 2.2.1-3 Permeab			
	Tank condition	Permeability		
	Empty	<u>0.95</u> 0		
	<u>Filled</u> (Note)	<u>U</u>		
	For spaces loaded with special kinds of c	cargo, a suitable permeability is used		
	depending on the kind of cargo.			
Chapter 3 STRUCTURAL DESIGN	~ I	CTURAL DESIGN		
PRINCIPLES	PRINCI	PLES		
3.3 Net Scantling Approach	3.3 Net Scantling Approach	1		
Symbols	Symbols			
For symbols not defined in this Section, refer to 1.5.	For symbols not defined in thi	s Section, refer to 1.5.		
t: Net thickness (<i>mm</i>)	t: Net thickness (<i>mm</i>)			

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

(Amendment related to Part C of the Rules in		
Amended	Original	Remarks
t_c : Corrosion addition (<i>mm</i>)	t_c : Corrosion addition (<i>mm</i>)	
t_{gr} : Gross thickness (mm)	t_{gr} : Gross thickness (mm)	
h_{stf} : Height (mm) of stiffener or primary supporting	h_{stf} : Height (mm) of stiffener or primary supporting	
member	member	
h_w : Web height (<i>mm</i>) of stiffener or primary supporting	h_w : Web height (<i>mm</i>) of stiffener or primary supporting	
member	member	
t_w : Web thickness (mm) of stiffener or primary	t_w : Web thickness (mm) of stiffener or primary	
supporting member	supporting member	
b_f : Face plate width (<i>mm</i>) of stiffener or primary	b_f : Face plate width (<i>mm</i>) of stiffener or primary	
supporting member	supporting member	
t_f : Face plate thickness (<i>mm</i>) of stiffener or primary	t_f : Face plate thickness (mm) of stiffener or primary	
supporting member	supporting member	
t_p : Thickness (<i>mm</i>) of the plating attached to a stiffener	t_p : Thickness (<i>mm</i>) of the plating attached to a stiffener	
or to a primary supporting member (hereinafter referred to	or to a primary supporting member (hereinafter referred to	
as "attached plating")	as "attached plating")	Amendment (9)
(Deleted)	d_e : Distance (<i>mm</i>) from the upper edge of the web to the	Clarifies some
	top of the flange for L3 profiles (See Fig. 3.3.3-1)	definitions and corrects
d_f : Distance (<i>mm</i>) for the shorter extension of flange for	d_f : Distance (<i>mm</i>) for the shorter extension of flange for	typographical errors:
<i>L</i> 2 profiles (<i>See</i> Fig. 3.3.3-1)	L2 profiles (See Fig. 3.3.3-1)	typographical citors.
(Omitted)	(Omitted)	Deletes the definition of
		d_e because L3 profile is
		not used in Part C
3.5 Minimum Requirements	3.5 Minimum Requirements	
3.5.2 Slenderness Requirements	3.5.2 Slenderness Requirements	
2521 Application	3531 Application	
3.5.2.1 Application 1 All structural members are to meet the slenderness	3.5.2.1 Application1 All structural members are to meet the slenderness	
requirements specified in 3.5.2, except for those listed below:	requirements specified in 3.5.2, except for those listed below:	
 Bilge plates within the cylindrical part of the ship 	 Bilge plates within the cylindrical part of the ship 	
Bige places within the cylindrical part of the ship	Bige places within the cylindrical part of the ship	

Amended-Original Requirements Comparison Table

Amended	Original	Remarks
and the radius gunwale	and the radius gunwale	
• Structure members in superstructures and deck	• Structure members in superstructures and deck	
houses in cases where such members do not	houses in cases where such members do not	
contribute to longitudinal strength.	contribute to longitudinal strength.	
Pillars in superstructures and deckhouses are to	Pillars in superstructures and deckhouses are to	
comply with the applicable slenderness and proportion	comply with the applicable slenderness and proportion	
requirements specified in 3.5.2.	requirements specified in 3.5.2.	
2 Where structural members are deemed by the Society	2 Where structural members are deemed by the Society	
as having an effectiveness equivalent to those compliant with	as having an effectiveness equivalent to those compliant with	
3.5.2, such members are to be deemed compliant with 3.5.2.	3.5.2, such members are to be deemed compliant with 3.5.2.	Amendment (9)
3 Notwithstanding -1 above, thickness of shell plating,	3 Notwithstanding -1 above, thickness of shell plating,	Clarifies some
deck, bulkhead and web of girder and stiffness of stiffener	deck, bulkhead and web of girder and stiffness of stiffener	definitions and corrects
need not to comply with 3.5.2, provided that buckling strength	need not to comply with 3.5.2 , provided that buckling strength	typographical errors:
requirements specified in 5.3 and 8.6.2, if applicable, are	requirements specified in 5.3 and 8.6.2, if applicable, are	
satisfied.	satisfied.	In the case of the hatch
4 Notwithstanding -1 above, thickness of hatch cover	(Newly Added)	cover, as with section -3,
plating and web of girder, and stiffness of stiffener need not		it should be clearly
comply with 3.5.2, provided that buckling strength		stated that slenderness
requirements specified in 14.6.5.6, if applicable, are satisfied.		requirements need not to
		be applied where a
		detailed buckling
		strength assessment is
	7	conducted.

	Amended	Original	Remarks
	lealisation of Stiffeners and Primary Supporting lembers	3.6 Idealisation of Stiffeners and Primary Supporting Members	
3.6.4	Shear Area, Effective Shear Depth, Section Modulus and Moment of Inertia for Stiffeners and Primary Supporting Members	3.6.4 Shear Area, Effective Shear Depth, Section Modulus and Moment of Inertia for Stiffeners and Primary Supporting Members	
TI to be take d h t	Effective Shear Depth of Stiffeners the effective shear depth d_{shr} (mm) of stiffeners is the effective shear depth d_{shr} (mm) of stiffeners is the stiffener as $p_{stf} = (h_{stf} - 0.5t_{c-stf} + t_p + 0.5t_{c-pl})\sin\phi_w$ (mm) of stiffener as specified in Fig. 3.3.3-1 p: Thickness (mm) of the stiffener attached plating as specified in Fig. 3.3.3-1 c_{-stf} : Corrosion addition (mm) of considered stiffener as given in 3.3.3	3.6.4.2 Effective Shear Depth of Stiffeners The effective shear depth d_{shr} (mm) of stiffeners is to be taken as: $d_{shr} = (h_{stf} - 0.5t_{c-stf} + t_p + 0.5t_{c-pl})\sin\phi_w$ h_{stf} Height (mm) of stiffener as specified in Fig. 3.3.3-1 t_p : Thickness (mm) of the stiffener attached plating as specified in Fig. 3.3.3-1 t_{c-stf} : Corrosion addition (mm) of considered stiffener as given in 3.2.5	Amendment (9) Clarifies some definitions and corrects typographical errors: Corrects the references
	stitlener as given in <u>5.5.5</u> c_{-pl} : Corrosion addition (<i>mm</i>) of attached plate of the stiffener considered as specified in <u>3.3.3</u> o_W : Angle (<i>deg</i>) as specified in Fig. 3.6.4-1. ϕ_W is to be taken as 90 <i>degrees</i> if the angle is greater than or equal to 75 <i>degrees</i>	t_{c-pl} : Corrosion addition (<i>mm</i>) of attached plate of the stiffener considered as specified in <u>3.2.5</u> ϕ_W :Angle (<i>deg</i>) as specified in Fig. 3.6.4-1. ϕ_W is to be taken as 90 <i>degrees</i> if the angle is greater than or equal to 75 <i>degrees</i>	

Amended Original Remarks Chapter 4 LOADS **Chapter 4** LOADS 4.2 Ship Motions and Accelerations 4.2 Ship Motions and Accelerations **Envelope Accelerations Envelope Accelerations** 4.2.4 4.2.4 4.2.4.1 Envelope Accelerations at Any Position 4.2.4.1 Envelope Accelerations at Any Position Envelope accelerations in the ship's longitudinal Envelope accelerations in the ship's longitudinal direction a_{Xe} (m/s²), those in transverse direction a_{Ye} direction a_{Xe} (m/s²), those in transverse direction a_{Ye} (m/s^2) and those in vertical direction a_{Ze} (m/s^2) at any (m/s^2) and those in vertical direction a_{Ze} (m/s^2) at any position are given in Table 4.2.4-1. position are given in Table 4.2.4-1.

(Amenument related to Fai	t C of the Rules for Survey and C	onstruction of Steel Ships (2024 Amend	ment 2))
Amended		Original		Remarks
Table 4.2.4-1 E	nvelope Accelerations a_{Xe} , a_{Ye} and a_{Xe}	a_{Ze} at Any Position		Amendment (7)
Direction	Envelope acceleration a_{Xe} , a_{Ye} and a			Revises the simplified
Longitudinal direction	$a_{Xe} = 0.35\sqrt{a_1^2 + [g \cdot \sin \phi + a_5(z)]}$			formula for the ship's hull centre of gravity to
Transverse direction	$a_{Ye} = \sqrt{a_2^2 + [g \cdot \sin \theta + a_4(z - z)]}$	$\overline{z_G)]^2}$		enhance accuracy.
Vertical direction $a_{Ze} = \sqrt{a_3^2}$	$-\{\max(0, C_{SS}[-g(1-\cos\phi)+a_5 x-x_G])\}^2 +$	$[\max(0, -g(1 - \cos \theta) + a_4 y)]^2$		Improves accuracy of the simplified formula
calculated based on the weight dis z_G : Z coordinate (m) at the centre of g described in the loading manual, i a_1 : Surge acceleration (m/s ²) at the ce a_2 : Sway acceleration (m/s ²) at the ce a_3 : Heave acceleration (m/s ²) at the c a_4 : Roll angular acceleration (rad/s ²)	ntre of gravity of the ship, as given in Table 4.2.3-1 ntre of gravity of the ship, as given in Table 4.2.3-2 entre of gravity of the ship, as given in Table 4.2.3-3 at the centre of gravity of the ship, as given in Table at the centre of gravity of the ship, as given in Table 4.2.2-1 e 4.2.2-2	der consideration may be used. on under consideration, which is 3 e 4.2.3-4		for X coordinate at the hull centre of gravity of the ship, so that it can be used for various hull shapes
(1) The relevant requirements in Part 2 is	nay be applied where the value is not available.			
4.4 Loads to be Considered in Loca	Strength 4.4 Loads to	o be Considered in Local Stren	gth	
4.4.2 Maximum Load Condition	4.4.2 Max	imum Load Condition		
		17 1		Amendment (9)
4.4.2.2 Lateral Loads	4.4.2.2 Late			Clarifies some
3 Notwithstanding -2 above, <u>design</u> (l_{N/m^2}) due to correspond storage or other		standing -2 above, deck load		definitions and corrects
(kN/m^2) due to <u>cargoes</u> , stores or other eddeck, is to be obtained from the following		ed cargoes and stores in general tained from the following formu	•	typographical errors:

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

	or Survey and Construction of Steel Ships (2024 Amend	//
Amended	Original	Remarks
be less than 0.	be less than 0.	Clarifies the definition
$P_{dk} = P_{dks} + P_{dkd}$	$P_{dk} = P_{dks} + P_{dkd}$	of deck load
P_{dks} : Static pressure (kN/m^2) due to <u>cargoes</u> , stores or	P_{dks} : Static pressure (kN/m^2) due to <u>unspecified</u>	
other equipment loaded on deck, as specified in	cargoes and stores in general cargo ships, as	
Table 4.4.2-2	specified in Table 4.4.2-2	
P_{dkd} : Dynamic pressure (kN/m^2) due to <u>cargoes</u> ,	P_{dkd} : Dynamic pressure (kN/m^2) due to <u>unspecified</u>	
stores or other equipment loaded on deck, as	cargoes and stores in general cargo ships, as	
specified in Table 4.4.2-2	specified in Table 4.4.2-2	
Table 4.4.2-2 Lateral Loads	Table 4.4.2-2 Lateral Loads	
Internal	Internal	
pressure Deck loads P_{dk} and P_{GW}	pressure Deck loads P_{dk} and P_{GW}	
P _{in}	External P _{in}	
External load due to	pressure P_{ex} Unspecified Green	
pressure P_{ex} Green Green	(Omitted) stores in general sea	
(Omitted) <u>or other</u> sea pressure	cargo ships, etc. pressure	
<u>equipment</u>	P_{exs} (Omitted) P_{dks} P_{GW}	
loaded on deck	(4.4.2.3-1) (4.4.2.7-1)	
$\begin{array}{c c} P_{exs} & P_{dks} \\ (4.4.2.3-1) & (Omitted) & P_{dks} \\ \hline & (4.4.2.7-1) & P_{GW} \end{array}$	$\begin{array}{c c} P_{exw} \\ (4.4.2.3-2) \end{array} (Omitted) \qquad \begin{array}{c} P_{dkd} \\ (4.4.2.7-2) \end{array} (4.4.2.8) \end{array}$	
P_{exw} (Omitted) P_{dkd} (4.4.2.8)	Notes:	
(4.4.2.7-2) (4.4.2.7-2)	The numbers in parentheses () indicate the sections of the	
Notes: The numbers in parentheses () indicate the sections of the	referenced requirements.	
referenced requirements.		
4.4.2.3 External Pressure due to Seawater	4.4.2.3 External Pressure due to Seawater	
1 Hydrostatic pressure P_{exs} (kN/m^2) corresponding to	1 Hydrostatic pressure P_{exs} (kN/m ²) corresponding to	
the scantling draught T_{SC} is to be considered (See Table	the scantling draught T_{SC} is to be considered (See Table	
4.4.2-3).	4.4.2-3).	
2 Hydrodynamic pressure P_{exw} (kN/m^2) specified in		
Table 4.4.2-4 is to be considered.		

Amended		Original	(20247 mieno	Remarks
Ta	ble 4.4.2-4 Hydrod	ynamic Pressure P _{exw}		Amendment (9)
Position under consideration		Hydrodynamic pressure P_{exw} (kN/m ²)		Clarifies some
$z \leq T_{SC}$	$P_{exw} = 0.5 C_R C_{NL}$	$C_{WD}\left[(P_d - P_c) \cos\left(\left(2 - \frac{z}{T_{SC}} - C_{yB} \right) \frac{\pi}{2} \right) + (P_d + P_c) \right]$		definitions and corrects typographical errors:
$T_{SC} < z \le T_{SC} + h_W$		$P_{WL} - \rho g(z - T_{SC})$	_	Corrects the case
$z > T_{SC} + h_W$		0		division of C_{WD} in RP
following formula by $C_{yB} = \frac{ 2y }{B_{x1}}$ $B_{x1}: \text{ Breadth of ship}$ the waterline d In RP, For $x/L_C \le 0.32$, $C_{WD} =$ For $0.32 < x/L_C \le 0.7$, C_{WD} For $0.7 < x/L_C$, $C_{WD} = ($ $P_d: \text{ As given by the following formula})$	r effects, to be taken as 0.9 s given by the following for $-2.6 - 1.2C_{yB})\frac{x}{L_c} + 1.0$ $D = (2.6 - 1.8C_{yB})\frac{x}{L_c} - 0$ $D = 1.0 - 0.6C_{yB}$ $D = (-1.9 + 1.1C_{yB})\frac{x}{L_c} - 0.27$ nate of the load calculation at not more than 1.0. Where (m) at the waterline of drauge loss not intersect the transvert $(2.15 - 1.4\frac{z}{T_{sc}} - 0.25C_{yB}$ $WD = 0.75 - 0.15\frac{z}{T_{sc}} + 0.17C_{yE}$ e:	rmulae: $0.04 + 0.12C_{yB}$ $-1.95 - 1.15C_{yB}$ $7 - 1.26C_{yB}$ In point or acceleration calculation point to B_{x1} , as given by the $B_{x1} = 0$, to be taken as $C_{yB} = 0$. ght in the transverse section of the hull under consideration. Where erse section, to be taken as $B_{x1} = 0$. $\int \frac{x}{L_c} + 0.32 + 0.13 \frac{z}{T_{SC}} + 0.15C_{yB}$		

Amended-Original Requirements Comparison Table
Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

6	or Survey and Construction of Steel Ships (2024 Ameno	lment 2))
Amended	Original	Remarks
For $0.3 < x/L_C \le 0.7$, $P_d = 7.292T_{SC} + 1.109B + 6$ For $0.7 < x/L_C$, $P_d = 7.292T_{SC} + 1.109B + 69.68 - 1000$		
P_c : As given by the following formulae:	$L_{\mathcal{C}}$	
For $x/L_C \le 0.3$, $P_c = 2.857T_{SC} - 0.5231B + 14.87$	$+(-0.1572L_c-152.8)\left(\frac{x}{L_c}-0.3\right)$	
For $0.3 < x/L_C \le 0.7$, $P_c = 2.857T_{SC} - 0.5231B +$		
For $0.7 < x/L_c$, $P_c = 2.857T_{sc} - 0.5231B + 14.87$	$+ (-2447C_W + 2622) \left(\frac{x}{L_C} - 0.7\right)$	
$P_{WL}: \text{Hydrodynamic pressure } (kN/m^2) \text{ at the waterline, to be taker} For y \ge 0, ext{ the value of } P_{exw} \text{ at } y = B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 \text{ and } x For y < 0, ext{ the value of } P_{exw} \text{ at } y = -B_{x1}/2 at $	$z = T_{SC}$ d $z = T_{SC}$	
4.4.2.7 Internal Pressure due to Cargoes, Stores or	4.4.2.7 Internal Pressure due to <u>Unspecified Cargoes</u>	Amendment (9) Clarifies some
Other Equipment Loaded on Deck	and Stores on General Cargo Ships, etc.	definitions and corrects
1 Static pressure P_{dks} (kN/m^2) due to <u>cargoes</u> , stores or <u>other equipment loaded on deck</u> is to be in accordance with	1 Static pressure P_{dks} (kN/m^2) due to <u>unspecified</u> cargoes and stores on general cargo ships, etc. is to be in	typographical errors:
the following (1) to (3):	accordance with the following (1) to (3):	Clarifies the note of
((1) to (3) are omitted.)	((1) to (3) are omitted.)	deck load
2 Dynamic pressure P_{dkd} (kN/m^2) due to <u>cargoes</u> , stores	2 Dynamic pressure P_{dkd} (kN/m^2) due to <u>unspecified</u>	
or other equipment loaded on deck is to be in accordance with the following formula:	<u>cargoes and stores on general cargo ships, etc.</u> is to be in accordance with the following formula:	
$P_{dkd} = C_{WDz} P_{dks} \frac{a_{Ze}}{g}$	$P_{dkd} = C_{WDz} P_{dks} \frac{a_{Ze}}{g}$	
C_{WDz} : As specified in Table 4.4.2-8	C_{WDZ} : As specified in Table 4.4.2-8	
a_{Ze} : Envelope acceleration (m/s^2) in the vertical	a_{Ze} : Envelope acceleration (m/s^2) in the vertical	Amendment (9)
direction specified in 4.2.4.1 . In obtaining the dynamic pressure acting on the cargo hold, the	direction specified in 4.2.4.1 . In obtaining the dynamic pressure acting on the cargo hold, the	Clarifies some
dynamic pressure acting on the eargo fiold, the	dynamic pressure acting on the eargo fiold, the	definitions and corrects

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
	5	
average value between the value of acceleration	average value between the value of acceleration	typographical errors:
at the forward and aft ends, whichever is	at the forward and aft ends, whichever is	
greater, of the cargo hold at the centreline and	greater, of the cargo hold at the centreline and	
the value at the mid-length of the cargo hold	the value at the mid-length of the cargo hold	Clarifies that parameters
may be taken. In this case, $T_{LC} = T_{SC}$ and $\theta =$	may be taken. In obtaining the dynamic	related to rolling motion
$a_4 = 0.$	pressure, the values of K_{xx} , GM, etc. may be	are not used in
	calculated by the following formulae:	calculation because it is
	$K_{xx} = 0.35B$	simplified that
	$T_{SC} = B^2 - 3C_W - 1$	acceleration is
	$\frac{GM}{GM} = \frac{T_{SC}}{2} + \frac{B^2}{T_{SC}C_B} \frac{3C_W - 1}{24} - z_G$	calculated at the centre
	$T_{LC} = T_{CC}$	line.
	$T_{LC} = T_{SC}$ $Z_G = 0.25 \frac{B}{C_B}$	
	$z_{G} = 0.25 \frac{1}{C}$	
	c_B	
4.6 Loads to be Considered in Strength Assessment by	4.6 Loads to be Considered in Strength Assessment by	
Cargo Hold Analysis	Cargo Hold Analysis	
Cargo Holu Allalysis	Cargo Hold Analysis	
4.6.2 Maximum Load Condition	4.6.2 Maximum Load Condition	
		Amendment (7)
4.6.2.4 External Pressure due to Seawater	4.6.2.4 External Pressure due to Seawater	Revises the simplified
1 Hydrostatic pressure P_{exs} corresponding to the	1 Hydrostatic pressure P_{exs} corresponding to the	formula for the ship' s
draught $T_{LC}(m)$ in the loading condition under consideration	draught $T_{LC}(m)$ in the loading condition under consideration	hull centre of gravity to
is to be considered (<i>See</i> Table 4.6.2-5).	is to be considered (<i>See</i> Table 4.6.2-5).	enhance accuracy.
	is to be considered (see Those 1.0.2.3).	ennance accuracy.
		C
		See the remark of
		amended-original
		requirements
		comparison table in
		Table 4.2.4-1.

		Amended		Original	Remarks
		Table 4.6.2-6 Hydrodynamic Pressure	P_{exw} in Equivalent Design	Wave HM	
		Hydrodynam	ic pressure P_{exw} (kN/m ²)		
		$z \leq T_{LC}$	$T_{LC} < z \le T_{LC} + h_W$	$z > T_{LC} + h_W$	
	HM-1	$P_{exw} = \max\left(-P_{HM}, \rho g(z - T_{LC})\right)$			
	HM - 2	$P_{exw} = \max(P_{HM}, \rho g(z - T_{LC}))$	$P_{WL} - \rho g(z - T_{LC})$	0	
4.6.2.5 Inte 1 Static p	P ((P ((ernal Pr pressure	n by the following formula: $P_{HM} = 0.5C_{R_{\perp}HM}C_{NL_{\perp}HM}C_{M}C_{HM1}H_{S_{\perp}HM}(P_{HM1} + P_{HM2})$ Omitted) P_{HM3} : As given by the following formula: $P_{HM3} = -\rho g R_{5_{\perp}HM} (x - x_G)(-0.002\lambda_{HM} + 1)$ $R_{5_{\perp}HM}$: As given by the following formula: $R_{5_{\perp}HM} = 2.08\pi \left(\frac{1}{L_C}\right)^{1.15}$ x_G : X coordinate (m) at the centre of gravity of the calculated based on the weight distribution be used. Omitted) essure due to Liquid Loaded $P_{ls} (kN/m^2)$ acting on tanks and ballast ids is to be in accordance with Table	.0) the ship, to be taken as $x_G = 0.45(0.3)$ the corresponding to the loading condition 4.6.2.5 Internal Pressu 1 Static pressure P_{ls}		
		ure P_{ld} (kN/m^2) acting on tanks and ith liquids is to be as given in Table		P_{ld} (kN/m^2) acting on tanks and liquids is to be as given in Table	

dment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))	Amended-Original Requirements Comparison Table
	ment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

	A	Amended		Original	Remarks
		Table 4.6.2-14 Accelerat	ion a_X , a_Y and a_Z at An	y Position	Amendment (7)
	quivalent sign wave	Longitudinal acceleration a_X (m/s^2)	Transverse acceleration a_Y (m/s^2)	Vertical acceleration a_Z (<i>m</i> /s ²)	Revises the simplified formula for the ship'
	<i>HM</i> -1	$-0.6g \cdot \sin \phi +(-0.2f_T + 0.3)a_1 -0.7a_5(z - z_G)$	0	$(-0.15 + 0.5f_T)a_3 + 0.7a_5(x - x_G)$	hull centre of gravity t enhance accuracy.
HM	HM-2	$0.6g \cdot \sin \phi + (0.2f_T - 0.3)a_1 + 0.7a_5(z - z_G)$	0	$(0.15 - 0.5f_T)a_3 - 0.7a_5(x - x_G)$	See the remark of amended-original
	<i>FM</i> -1	$0.1g \cdot \sin \phi +(-0.4f_T + 0.2)a_1 +(0.02T_{LC} - 0.14)a_5(z - z_G)$	0	$\begin{array}{c} 0.075a_{3} \\ -(0.02T_{LC}-0.14)a_{5}(x-x_{G}) \end{array}$	requirements comparison table in Table 4.2.4-1.
FM	<i>FM</i> -2	$-0.1g \cdot \sin \phi +(0.4f_T - 0.2)a_1 +(-0.02T_{LC} + 0.14)a_5(z - z_G)$	0	$-0.075a_3 \\ -(-0.02T_{LC} + 0.14)a_5(x - x_G)$	
	BR-1P	0	$-g \cdot \sin \theta$ +(-0.2f _T + 0.2)a ₂ -a ₄ (z - z _G)	$g(\cos \theta - 1) \\ + (0.7 - 0.4f_T)a_3 + a_4y$	
BR	BR-2P	0	$g \cdot \sin \theta$ +(0.2f _T - 0.2)a ₂ +a ₄ (z - z _G)	$g(\cos \theta - 1) + (-0.7 + 0.4f_T)a_3 - a_4y$	
DK	BR-1S	0	$g \cdot \sin \theta$ +(0.2f _T - 0.2)a ₂ +a ₄ (z - z _G)	$g(\cos \theta - 1) + (0.7 - 0.4f_T)a_3 - a_4y$	
	BR-2S	0	$-g \cdot \sin \theta$ +(-0.2f _T + 0.2)a ₂ -a ₄ (z - z _G)	$g(\cos \theta - 1) \\ + (-0.7 + 0.4f_T)a_3 + a_4y$	
	BP-1P	0	$-0.002\lambda_{BP}g\cdot\sin\theta$ $-0.3a_2-0.3a_4(z-z_G)$	$[1 - 1.6\exp(-0.012\lambda_{BP})]a_3 + 0.3a_4y$	
BP	BP-2P	0	$0.002\lambda_{BP}g \cdot \sin\theta$ $+0.3a_2 + 0.3a_4(z - z_G)$	$\frac{[-1+1.6\exp(-0.012\lambda_{BP})]a_3}{-0.3a_4y}$	
БΡ	BP-1S	0	$0.002\lambda_{BP}g \cdot \sin\theta$ $+0.3a_2 + 0.3a_4(z - z_G)$	$[1 - 1.6 \exp(-0.012\lambda_{BP})]a_3 \\ -0.3a_4y$	
	BP-2S	0	$-0.002\lambda_{BP}g \cdot \sin\theta$ $-0.3a_2 - 0.3a_4(z - z_G)$	$[-1 + 1.6\exp(-0.012\lambda_{BP})]a_3 + 0.3a_4y$	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Sh	ips (2024 Amendment 2))
---	-------------------------

	mien		Amended		i burvey and cons	Original		Remarks
	$ \theta, \phi: A $ $ x_G: X \circ $ $ c_G: Z_G: Z \circ $	a_3, a_4, a_5 : As specified coordinate (<i>i</i> alculated base coordinate (<i>i</i>)	As specified in 4.2.3 in 4.2.2 m) at the centre of gravity of the ship to sed on the weight distribution correspont n) at the centre of gravity of the ship is in Table 4.6.2-9	onding to	the considered loading condi-	tion may be used.		
4.7 Loa	ds to k	oe Consid	lered in Fatigue		4.7 Loads to be	Considered in Fatigue		
4.7.2 (Cyclic	Load Co	ondition		4.7.2 Cyclic L	oad Condition		
1 Stati holds loaded 4.7.2-7. 2 Dyna	c press 1 with amic 1	sure <i>P_{ls}</i> liquids i	The due to Liquid Cargoes (kN/m^2) acting on tanks and but is to be in accordance with P_{ld} (kN/m^2) acting on tank induced is to be as given in	Table s and	 Static pressur holds loaded with li 4.7.2-7. Dynamic pro 	Pressure due to Liquid Ca re P_{ls} (kN/m^2) acting on tan iquids is to be in accordance essure P_{ld} (kN/m^2) acting with liquids is to be as given	ks and ballast ce with Table on tanks and	
			Table 4.7.2-9 Accelera	tions a	a_X, a_Y and a_Z at Any	Position	•	Amendment (7)
	~	iivalent gn wave	Longitudinal acceleration a_X (m/s^2)	Transv	erse acceleration $a_Y (m/s^2)$	Vertical acceleration a_Z (<i>m</i> / <i>s</i> ²)		Revises the simplified formula for the ship's
		HM-1	$-0.6g \cdot \sin \phi +(-0.2f_T + 0.3)a_1 -0.7a_5(z - z_G)$		0	$(-0.15 + 0.5f_T)a_3 + 0.7a_5(x - x_G)$		hull centre of gravity to enhance accuracy.
	HM	HM-2	$0.6g \cdot \sin \phi +(0.2f_T - 0.3)a_1 +0.7a_5(z - z_G)$		0	$(0.15 - 0.5f_T)a_3 - 0.7a_5(x - x_G)$		See the remark of amended-original
	FM	<i>FM</i> -1	$0.1g \cdot \sin \phi \\ + (-0.4f_T + 0.2)a_1 \\ + (0.02T_{LC} - 0.14)a_5(z - z_G)$		0	$0.075a_3 - (0.02T_{LC} - 0.14)a_5(x - x_G)$		requirements comparison table in Table 4.2.4-1.

Amended			Remar		
	FM-2	$-0.1g \cdot \sin \phi +(0.4f_T - 0.2)a_1 +(-0.02T_{LC} + 0.14)a_5(z - z_G)$	0	$-0.075a_3 \\ -(-0.02T_{LC} + 0.14)a_5(x - x_G)$	
	BR-1P	0	$-g \cdot \sin \theta$ +(-0.2f _T + 0.2)a ₂ -a ₄ (z - z _G)	$g(\cos \theta - 1) + (0.7 - 0.4f_T)a_3 + a_4y$	
DD	BR-2P	0	$g \cdot \sin \theta \\ + (0.2f_T - 0.2)a_2 \\ + a_4(z - z_G)$	$g(\cos \theta - 1) \\ + (-0.7 + 0.4 f_T)a_3 - a_4 y$	
BR	BR-1S	0	$g \cdot \sin \theta \\ + (0.2f_T - 0.2)a_2 \\ + a_4(z - z_G)$	$g(\cos \theta - 1) + (0.7 - 0.4f_T)a_3 - a_4y$	
	BR-2S	0	$-g \cdot \sin \theta$ +(-0.2f _T + 0.2)a ₂ -a ₄ (z - z _G)	$g(\cos \theta - 1) \\ + (-0.7 + 0.4f_T)a_3 + a_4y$	
	BP-1P	0	$-0.002\lambda_{BP}g\cdot\sin\theta$ $-0.3a_2-0.3a_4(z-z_G)$	$[1 - 1.6\exp(-0.012\lambda_{BP})]a_3 + 0.3a_4y$	
DD	BP-2P	0	$\frac{0.002\lambda_{BP}g\cdot\sin\theta}{+0.3a_2+0.3a_4(z-z_G)}$	$[-1 + 1.6 \exp(-0.012\lambda_{BP})]a_3 \\ -0.3a_4y$	
BP	BP-1S	0	$0.002\lambda_{BP}g \cdot \sin\theta$ $+0.3a_2 + 0.3a_4(z - z_G)$	$[1 - 1.6 \exp(-0.012 \lambda_{BP})] a_3 \\ -0.3 a_4 y$	
	BP-2S	0	$-0.002\lambda_{BP}g\cdot\sin\theta\\-0.3a_2-0.3a_4(z-z_G)$	$[-1 + 1.6 \exp(-0.012\lambda_{BP})]a_3 + 0.3a_4y$	
$ \theta, \phi: X $ $ x_G: X $ $ t $ $ z_G: Z $, a_3 , a_4 , a_5 : . As specified coordinate (pased on the coordinate (As specified in 4.2.3 in 4.2.2 (<i>m</i>) at the centre of gravity of the ship, t weight distribution corresponding to th <i>m</i>) at the centre of gravity of the ship in in Table 4.6.2-9	e considered loading condition may	be used.	

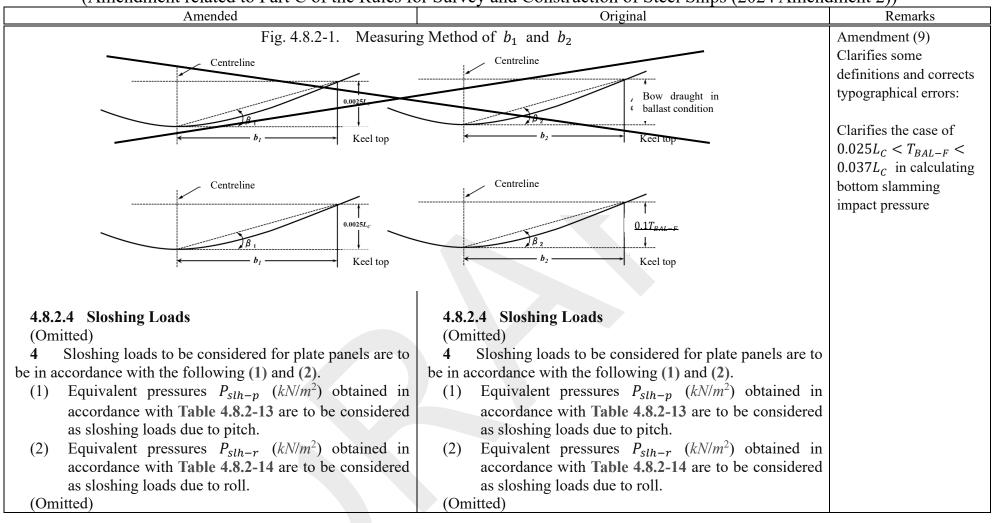
Amended	Original	Remarks
4.8 Loads to be Considered in Additional Structural	4.8 Loads to be Considered in Additional Structural	
Requirements	Requirements	
4.8.2 Maximum Load Condition	4.8.2 Maximum Load Condition	
4.8.2.2 Bottom Slamming	4.8.2.2 Bottom Slamming	Amendment (9) Clarifies some
1 In ships with $T_{BAL-F}(m)$ less than $0.037L_{C230}$, the	1 In ships having a bow draught less than $0.037L_{C230}$	definitions and corrects
bottom slamming load specified in the following (1) to (3) is	in the ballast condition, the bottom slamming load specified in	
to be considered. Here, "ballast condition" means the ordinary	the following (1) to (3) is to be considered. Here, "ballast	typographical errors:
condition where only ballast tanks such as clean ballast tanks,	condition" means the ordinary condition where only ballast	Unifies the notes of the
segregated ballast tanks and ballast holds are ballasted. When	tanks such as clean ballast tanks, segregated ballast tanks and	bow draught in the
multiple ballast conditions are planned, it is permissible to	ballast holds are ballasted. When multiple ballast conditions	bow draught in the ballast condition newly
consider only the ballast condition specified for heavy weather	are planned, it is permissible to consider only the ballast	specified in 1.4.2.4
conditions, limited to the case where the loading manual	condition specified for heavy weather conditions, limited to	specified in 1.4.2.4
specifies a ballast condition for heavy weather. This ballast	the case where the loading manual specifies a ballast condition	
condition, however, excludes exceptional cases where cargo	for heavy weather. This ballast condition, however, excludes	
tanks are ballasted in heavy weather conditions to ensure the	exceptional cases where cargo tanks are ballasted in heavy	
safety of the ship.	weather conditions to ensure the safety of the ship.	
(1) In ships with $T_{BAL-F}(m)$ equal to or less than	(1) In ships <u>having a bow draught</u> equal to or less than	
$0.025L_{C230}$, the bottom slamming load P_{SL1} (kN/m^2)	$0.025L_{C230}$ in the ballast condition, the bottom	
specified in Table 4.8.2-1 is to be considered. In ships	slamming load P_{SL1} (kN/m^2) specified in Table	
with $T_{BAL-F}(m)$ greater than $0.025L_{C230}$ but less	4.8.2-1 is to be considered. In ships having a bow	
than $0.037L_{C230}$, the requirements specified in	<u>draught</u> greater than $0.025L_{C230}$ but less than	
10.6.2.3-2 are to be satisfied.	$0.037L_{C230}$ in the ballast condition, the requirements	
(2) Notwithstanding (1) shares in shine of which I is	specified in 10.6.2.3-2 are to be satisfied.	
(2) Notwithstanding (1) above, in ships of which L_C is	(2) Notwithstanding (1) above, in ships of which L_C is	
equal to or less than 150 m, where $V/\sqrt{L_c}$ is not less	equal to or less than 150 m, where $V/\sqrt{L_c}$ is not less	
than 1.4 and C_B is not more than 0.7, the bottom	than 1.4 and C_B is not more than 0.7, the bottom	
slamming load P_{SL2A} (kN/m^2) and P_{SL2B} (kN/m^2)	slamming load P_{SL2A} (kN/m^2) and P_{SL2B} (kN/m^2)	
are to be as specified in Table 4.8.2-2. However, (1)	are to be as specified in Table 4.8.2-2. However, (1)	
above may be applied for ships that can be expected	above may be applied for ships that can be expected	

Amended-Original Requirements Comparison Table

(Amendment related to	Part C of the]	Rules for Survey	and Construction	of Steel Ships	(2024 Amendment 2))
			J		1	

Amended	Original	Remarks
to carry a certain amount of cargo regularly such as	to carry a certain amount of cargo regularly such as	
container carriers.	container carriers.	
(3) Notwithstanding (1) above, in ships of which L_c is	(3) Notwithstanding (1) above, in ships of which L_c is	
equal to and greater than 150 m and C_B is not less	equal to and greater than 150 m and C_B is not less	
than 0.7, the bottom slamming load P_{SL3} (kN/m ²)	than 0.7, the bottom slamming load P_{SL3} (kN/m ²)	
specified in Table 4.8.2-3 is to be considered.	specified in Table 4.8.2-3 is to be considered.	
2 Notwithstanding the requirements of (1) to (3) in -1	2 Notwithstanding the requirements of (1) to (3) in -1	
above, where the strengthened bottom forward is of structural	above, where the strengthened bottom forward is of structural	
arrangement other than that specified in 10.6.2.2(1) and	arrangement other than that specified in 10.6.2.2(1) and	
10.6.3.2, the bottom slamming loads P_{SL4A} (kN/m^2), P_{SL4B}	10.6.3.2, the bottom slamming loads P_{SL4A} (kN/m ²), P_{SL4B}	
(kN/m^2) and P_{SL4C} (kN/m^2) specified in Table 4.8.2-4 are to	(kN/m^2) and P_{SL4C} (kN/m^2) specified in Table 4.8.2-4 are to	
be considered.	be considered.	

Amended-Original Requirements Comparison Table
--


(Amendment related to Part C of the Rules for Surve	y and Construction of Steel Ships (2024 Amendment 2))
---	---

Amended	Original	Remarks
Table 4.8.2-1 Bottom Slam	ming Impact Pressure P _{SL1}	
Structural member under consideration	Bottom slamming impact pressure P_{SL1} (kN/m^2)	
Stiffeners attached to outer shell and bottom longitudinals ⁽¹⁾	$P_{SL1} = 2.48 \frac{L_C C_{SL1A} C_{SL2}}{\beta_1}$	
(1) Formula for ships where the bow draught $T_{BAL-F}(m)$ is not more	tion of the hull $0.2L_c$ aft from the fore end (See Fig. 4.8.2-1) e than $0.025L_{c230}$ in the ballast condition. For ships where the bow L_{c230} in the said ballast condition, the scantlings of members are to be	

Amended	Original	Remarks
Table 4.8.2-2 Bottom Slamming In	npact Pressures P_{SL2A} and P_{SL2B}	Amendment (9)
	Bottom slamming impact pressures P_{SL2A} and P_{SL2B} (kN/m ²)	Clarifies some
Stiffeners attached to outer shell and bottom longitudinals ⁽¹⁾	$P_{SL2A} = 2.48 \frac{L_C C_{SL1B} C_{SL2} C_{SL3}}{\beta_1}$	definitions and corrects typographical errors:
Floor ⁽²⁾	$P_{SL2B} = 2.48 \frac{L_C C_{SL1B} C_{SL2} C_{SL3}}{\beta_2}$	Clarifies the case of
keel equals $0.0025L_e$, at the transverse section of the hull $0.025L_e$ but less than $0.037L_e$ in ballast condition, the horizontal line As specified in Table 4.8.2-1 (See Fig. 4.8) (b) In cases where $0.025L_c < T_{BAL-F} < 0.037L_c$ 	puter shell to the horizontal line where the height from the top of the keel $2L_c$ aft from the fore end (See Fig. 4.8.2-1). $025L_c$ in the ballast condition. For ships where the bow draught $T_{BAL=F}$, the scantlings of members are to be determined in accordance with the in the ballast condition.	$0.025L_C < T_{BAL-F} < 0.037L_C$ in calculatin bottom slamming impact pressure

Amended	Original	Rema
Table 4.8.2-3 Bottom Slam	ming Impact Pressure P _{SL3}	
Structural member under consideration	Bottom slamming impact pressure P_{SL3} (kN/m^2)	
Stiffeners attached to outer shell and bottom longitudinals $^{(1)(2)}$	$P_{SL3} = 1.14 \frac{V_{SL}^2}{\beta_3}$	
Notes:		
(Omitted)		
(1) Formula for ships where the bow draught $T_{BAL=E}$ is not more than 0.02 is more than $0.025L_{C230}$ but less than $0.037L_{C230}$ in the ballast even with the requirements in 10.6.2.3-2.	$25L_{C230}$ - in the ballast condition. For ships where the bow draught $T_{BAL=F}$ - ondition, the scantlings of members are to be determined in accordance	
	loaded with sea water in the ballast condition, the bottom slamming load a this case, it is to be stated in the loading manual that the said ballast tank	

Amended		Original	Remark
ble 4.8.2-4 Bottom Slamming Impact	Pressures P_{SL4A}, P_{SL4B} a	and P_{SL4C} for Special Types of Construction	
Ship and structural me		Bottom slamming impact pressure (kN/m^2)	
Ships where L_C is not greater than 150 m,	Floor of longitudinal framing system	$P_{SL4A} = C_{SL7} P_{SL2B}$	
$V/\sqrt{L_C}$ is not less than 1.4 and C_B is not greater than 0.7	Girder of transverse framing system	$P_{SL4A} = P_{SL2B}$	
General		$P_{SL4B} = \max\left(C_{SL8}P_{SL1}, P_{\min}\right)$	
Ships where L_C is not greater than 150 m, $V/\sqrt{L_C}$ is not less than 1.4 and C_B is not greater than 0.7	Floors and girders ⁽¹⁾	$P_{SL4B} = \max\left(C_{SL8}P_{SL2B}, P_{\min}\right)$	
Ships where L_c is not less than 150 $m \equiv$ and C_B is not less than 0.7		$P_{SL4B} = \max\left(C_{SL8}P_{SL3}, P_{\min}\right)$	
General		$P_{SL4C} = \max\left(C_{SL7}P_{SL1}, P_{\min}\right)$	
Ships where L_C is not greater than 150 m, $V/\sqrt{L_C}$ is not less than 1.4 and C_B is not greater than 0.7	Stiffeners attached to outer shell or bottom longitudinals ⁽²⁾	$P_{SL4C} = \max\left(C_{SL7}P_{SL2A}, P_{\min}\right)$	
Ships where L_c is not less than 150 m_{\square} and C_B is not less than 0.7		$P_{SL4C} = \max\left(C_{SL7}P_{SL3}, P_{\min}\right)$	
Notes: (Omitted)			
linear interpolation assuming the bottom slammin(2) Formula for ships having bow draught of with T	ng impact pressure is P_{\min} when the $T_{BAL=F}$ not more than $0.025L_{C230}$ is	n $0.037L_{C230}$ in the ballast condition, to be obtained by e bow draught is $0.037L_{C230}$. n the ballast condition. Where the bow draught T_{BAL-F} is ings of members are to be determined in accordance with	

Amended	t C of the Rules for Survey and Construction of Steel Ships (2 Original	Remarks
Table 4.8.2-13 Equival	lent Pressure for Plate Panels and Sloshing Loads Due to Pitch	Amendment (9)
Relevant ship motion	Equivalent pressure (kN/m^2)	Clarifies some
Pitch	$P_{slh-p} = \frac{F_{slh-p}}{C_{slh1} \cdot \min(1000, C_{slh2})} \cdot 10^6$	definitions and corrects typographical errors:
$C_{slh1} = b, \ C_{slh2} = a \ \text{for plate p}$ $C_{slh1} = a, \ C_{slh2} = b \ \text{for plate p}$ $C_{slh1} = b_f \ \text{or } b_w, \ C_{slh2} = l \ \text{for}$ Stiffened system A ⁽¹⁾ : Transverse stiffened systems; vertical gird tank top plates of longitudinal are attached to transverse bulk Stiffened system B ⁽²⁾ : Transverse stiffened systems; vertical gird tank top plates of transverse bulk stiffened systems; vertical gird tank top plates of transverse bulk attached to transverse bulk be a direction a: Length (mm) of the longer size b: Length (mm) of the shorter b_f, b_w: Width (mm) of the shorter b_f, b_w: Width (mm) of the flat θ : Angle (rad) of corrugated to the limet force (klasses) for the shorter b_f, b_w: Width (mm) of corrugated to the limet force (klasses) for the shorter b_f, b_w: Width (mm) of the flat the limet force (klasses) for the limet for the limet force (klasses) for the limet for the limet force (klasses) for the limet for	panels of stiffened system B or vertically corrugated bulkheads erse bulkheads, transverse wash bulkheads, front and aft walls of tanks with vertically ders of vertically stiffened systems attached to longitudinal bulkheads or tank side walls; lly stiffened systems; horizontal girders stiffened in parallel to depth direction of webs which kheads or transverse wash bulkheads or front and aft walls of tanks erse bulkheads, transverse wash bulkheads, front and aft walls of tanks erse bulkheads, transverse wash bulkheads, front and aft walls of tanks with horizontally ders of horizontally stiffened systems attached to longitudinal bulkheads or tank side walls; stiffened systems; horizontal girders in perpendicular to depth direction of webs which are ads or transverse wash bulkheads or front and aft walls of tanks; cross-ties in transverse side of the plate panel ange and web of corrugated bulkheads respectively, as specified in 10.9.2.1 bulkheads, as specified in 10.9.2.1 bulkheads, as specified in 7.2.7.3 tN), to be taken as: $C_{SS} \cdot a_{5.sth} \cdot C_{sth3} \cdot 10^{-3}$ ensity (t/m^3) in considered h_{lc} . Table 4.4.2-6 may be applied correspondingly. aspect ratio of the tank, as given by the following formula: $-\frac{1.5\ell_{tk}}{h_{tk}}$ k height (m) e following formula:	Deletes angle (rad) of corrugated bulkheads θ because it is not used in formula of sloshing loads due to pitch
a_{5_slh} : Pitch angular a are to be used.	receivation (<i>rau/s</i>), as specified in <i>rable</i> 4.6.2-11. The parameters for the bandst condition	Revises the simplified

Amended	Original	Remarks
to the tank, to be taken as: $C_{slh3} = C_{h1}(0.0104 x_{TG} - x_G + 1.0)$ $C_{h1} \qquad : \text{Parameter depending on } h_{lc}, \text{ as specified}$ $x_{TG} \qquad : X \text{ coordinate } (m) \text{ at the volumetric centre}$	of gravity of the tank under consideration of the ship, to be taken as $x_G = \frac{0.45}{(0.36 + 0.2C_{B_{LC}})}L_C$	formula for the ship's hull centre of gravity to enhance accuracy. See the remark of amended-original
 See Fig. 10.9.3-1 See Fig. 10.9.3-2 		requirements comparison table in Table 4.2.4-1.

Amended		Original		Remarks
Table 4.8.2-14 E	uivalent Pressure for I	Plate Panels, Sloshing Load Due to Roll	Am	nendment (9)
Relevant ship motion		Equivalent pressure (kN/m^2)		rifies some
Roll	P _s	$F_{lh-r} = \frac{F_{slh-r}}{C_{slh1} \cdot \min(1000, C_{slh2})} \cdot 10^6$		initions and corrects ographical errors:
$C_{slh1} = b, C_{slh2} = a \text{ for pla}$ $C_{slh1} = a, C_{slh2} = b \text{ for pla}$ $C_{slh1} = b_f \text{ or } b_w, C_{slh2} = b$ Stiffened system A ⁽¹⁾ : Lon systems; vertical girders o tank top plates of transvers attached to longitudinal bu Stiffened system B ⁽²⁾ : Lon longitudinally stiffened sy front and aft walls of tanks perpendicular to depth dird walls; cross-ties in longitu a, b, b_f, b_w, \theta_7 l: As speci F_{slh-r}: Equivalent impact force F_{slh-r} = \rho_L \cdot C_{slh1} \cdot b_{tk}^{1.5} \cdot a ρ_L : As specified in Table 4.8. b_{tk} : Maximum tank breadth a_4 : Roll angular acceleration $C_{slh3} = C_{h1}$	te panels of stiffened system A te panels of stiffened system E 2 for vertically corrugated bull gitudinal bulkheads, longitudi f vertically stiffened systems a se stiffened systems; horizonta lkheads or longitudinal wash l gitudinal bulkheads, longitudin stems; vertical girders of horiz s; tank top plates of longitudin ection of webs attached to long dinal direction fied in Table 4.8.2-13 e (kN), to be taken as: $4 \cdot C_{slh3} \cdot 10^{-3}$ 2-13 (m)	 Scheads anal wash bulkheads, tank side walls with vertically stiffened ttached to transverse bulkheads or front and aft walls of tanks; 1 girders stiffened in parallel to depth direction of webs which are bulkheads or front and aft walls of tanks and wash bulkheads, front and aft walls of tanks with ontally stiffened systems attached to transverse bulkheads or ally stiffened systems; horizontal girders stiffened in gitudinal bulkheads or longitudinal wash bulkheads or tank side 3.4. The parameters for the ballast condition are to be used. o be taken as: 		letes angle (rad) of rugated bulkheads θ

Amended	Original	Remarks
Annex 5.1 EXTENT OF HIGH TENSILE	Annex 5.1 EXTENT OF HIGH TENSILE	Remarks
STEEL	STEEL	
SILL	SIEEL	
An1 Extent of High Tensile Steel Use	An1 Extent of High Tensile Steel Use	
An1.2 Vertical Extent	An1.2 Vertical Extent	
		Amendment (9)
An1.2.1	An1.2.1	Clarifies some
$\underline{1}$ The vertical extent (<i>m</i>) of high tensile steel $z_{hts,i}$ use	The vertical extent (m) of high tensile steel $z_{hts,i}$ use	definitions and corrects
in the deck zone or bottom zone, respectively, from the deck	in the deck zone or bottom zone, respectively, from the deck	typographical errors:
or the baseline, is not to be taken less than the value obtained	or the baseline, is not to be taken less than the value obtained	
from the following formula. (See Fig. An1)	from the following formula. (See Fig. An1)	Clarifies the usage of
$z_{hts,i} = z_1 \left(1 - \frac{\sigma_{perm,i}}{\sigma_i} \right)$	$z_{hts,i} = z_1 \left(1 - \frac{\sigma_{perm,i}}{\sigma_i} \right)$	gross/net scantlings in
		the extent of high tensile
z_1 : Distance (m) from the horizontal neutral axis to	z_1 : Distance (m) from the horizontal neutral axis to	steel
the deck or the baseline.	the deck or the baseline.	
$\sigma_{perm,i}$: Permissible vertical bending stress (N/mm ²) of	$\sigma_{perm,i}$: Permissible vertical bending stress (N/mm ²) of	
the steel under consideration as given in Table	the steel under consideration as given in Table	
5.2.1-2 and Fig. An1.	5.2.1-2 and Fig. An1.	
σ_L : Vertical bending stress σ_{dk} (N/mm ²) at the deck	σ_L : Vertical bending stress σ_{dk} (<i>N/mm²</i>) at the deck	
or σ_{bl} (N/mm ²) at the baseline as given in	or σ_{bl} (N/mm ²) at the baseline as given in	
Table An1 2 The requirement in 1 shows is to be emplied for shine.	Table An1	
2 The requirement in -1 above is to be applied for ships		
to which Part 2-1 applies. In this case, the requirement is to be modified as necessary, e.g. by using net scantlings and by		
using the value specified in 5.2.1.1-1, Part 2-1 as $\sigma_{perm,i}$.		

Amended Amended				Original	Remarks	
		ble An1 Stresses at	Baselin			
	Condition Baseline		Deck			
	Seagoing	$\sigma_{bl} = \frac{ M_{SW} + M_{WV} }{\underline{I_{gr}I_{y=n50}}} z_n \times 10^{-2}$		$\sigma_{dk} = \frac{ M_{SW} + M_{WV} }{\frac{I_{gr}I_{y=ns0}}{I_{gr}}V_D \times \frac{10^{-3}10^5}{10^5}}$		
	Operation in harbor/sheltered water	$\sigma_{bl} = \frac{ M_{SW-p} }{I_{gr}I_{y=n50}} z_n \times \frac{10^{-3}}{10^{-3}} 10^5$		$\sigma_{dk} = \frac{ M_{SW-p} }{\underline{I_{gr}} \underline{I_{y=n50}}} V_D \times \frac{10^{-3}}{\underline{10^5}}$		
	V_D : Refer to 5.2.1.2					
Chapter				Chapter 6 LOCAL STR		
6.2 Design Los Assessed	6.2 Design Load Scenarios and Loads of the Ship to Be Assessed		6.2 Design Load Scenarios and Loads of the Ship to Be Assessed			
	ment Design Load Scena mbers to <u>b</u> e Assessed	arios and Loads	6.2.2	Assessment Design Load Sco for Members to <u>Be</u> Assessed	enarios and Loads	

Amended-Original Requirements Comparison Table						
(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))						

Amended				Original			Remarks
Table 6.2.2-1 Assess	sment Desi	gn <u>L</u> oad	n <u>L</u> oad <u>S</u> cenarios and Loads for Members/Compartments to <u>b</u> e Assessed Load				d Amendment (9) Clarifies some
-	Design load scenario	T , 1		Refer to the		ne following:	definitions and correc typographical errors:
		Lateral Load type	Load type	Load component	Lateral load (P)	Hull girder load (M_{V-HG}, M_{H-HG})	Clarifies the notes of
Outer shell (including stiffeners)		External pressure	Seawater	Static + dynamic loads	4.4.2.2-1		deck load
Cargo tanks, ballast tanks, ballast holds and other tanks	Maximum load condition	Internal	Liquid loaded	Static + dynamic loads	4.4.2.2-2		
Cargo holds ⁽¹⁾		load	Dry bulk cargoes	Static + dynamic loads		4.4.2.9	
Cargo holds ⁽²⁾			Others	Static + dynamic loads			
Weather decks (including stiffeners)		Others $\frac{unsp}{c}$	Green sea, unspecified loads cargoes on the deck, etc.	static + pressures specified			
Internal decks ⁽²⁾ (including stiffeners)			Cargoes	Static + dynamic loads	1 1 2 2 3		
			(Omittee	1)			
(Notes)			(Omittee	1)			

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
6.3 Plates	6.3 Plates	
6.3.2 Plates 6.3.2 Plates 6.3.2.1 Bending Strength The plate thickness is to be not less than the largest of the values obtained by the following formula under all applicable design load scenarios specified in Table 6.2.2-1. Application of gross or net scantlings in the values obtained from the following is specified in Table 6.3.2-1: $t = C_{Safety}C_{Aspect}\sqrt{\frac{4}{1.15C_a\sigma_Y}\sqrt{\frac{ P b^2}{f_P}} \times 10^{-3}(mm)}$ σ_Y : Specified minimum yield stress (<i>N/mm²</i>) <i>b</i> : Length (<i>mm</i>) of the shorter side of the plate panel <i>a</i> : Length (<i>mm</i>) of the longer side of the plate panel <i>a</i> : Aspect ratio to be taken as <i>a/b</i> . <i>f_P</i> : Strength coefficient as given in Table 6.3.2-1. <i>P</i> : Lateral pressure (<i>kN/m²</i>) corresponding to each Design load scenario specified in Table 6.3.2-1, to be calculated at the load calculation point specified in 3.7. <i>C_a</i> : Coefficient of axial force effect as specified in Table 6.3.2-2. <i>C_{Aspect}</i> : Correction coefficient for the aspect ratio of the plate panel as given in Table 6.3.2-1.	6.3.2 Plates 6.3.2 Plates 6.3.2.1 Bending Strength The plate thickness is to be not less than the largest of the values obtained by the following formula under all applicable design load scenarios specified in Table 6.2.2-1. Application of gross or net scantlings in the values obtained from the following is specified in Table 6.3.2-1: $t = C_{safety}C_{Aspect}\sqrt{\frac{4}{1.15C_a\sigma_Y}}\sqrt{\frac{ P b^2}{f_P}} \times 10^{-3}(mm)}$ σ_Y : Specified minimum yield stress (N/mm^2) b: Length (mm) of the shorter side of the plate panel a: Length (mm) of the longer side of the plate panel a: Aspect ratio to be taken as a/b . f_P : Strength coefficient as given in Table 6.3.2-1. P: Lateral pressure (kN/m^2) corresponding to each Design load scenario specified in Table 6.3.2-1, to be calculated at the load calculation point specified in 3.7. C_a : Coefficient of axial force effect as specified in Table 6.3.2-2 when $\alpha \ge 2$ or Table 6.3.2-3 when $\alpha < 2$. C_{Aspect} : Correction coefficient for the aspect ratio of the plate panel as given in Table 6.3.2-1.	Amendment (5) Revises the scope of application for correction coefficient for the aspect ratio in the local strength calculation formula of plate members.
C_{Safety} : Safety factor taken as 1.0. σ_{BM} : Axial stress (<i>N/mm²</i>) due to hull girder bending as specified in 6.2.3.1.	C_{Safety} : Safety factor taken as 1.0. σ_{BM} : Axial stress (<i>N/mm²</i>) due to hull girder bending as specified in 6.2.3.1.	

 $\overline{}$

Amen		i the Rules for Surve	y and construct	Original	03 (202		Remarks
Table 6.3.2-1 Application of C	Table 6.3.2-1 Application of Gross or Net Scantlings and Each Parameter in the Evaluation for Each Design Load Scenario						dment (5)
Design load scenario	Application of gross or net scantlings	Lateral load P (kN/m ²)	Member	C_{Aspect}	f_P	applica	es the scope of ation for tion coefficient for
		P_{ex} , P_{in} , P_{dk} and P_{GW} To be in accordance with	Longitudinal hull- girder structural- members	1.0	_	the asp local s	bect ratio in the trength ation formula of
Maximum load condition	Net scantling	4.4.2.2-1 to -4 corresponding to compartments/members to be assessed in Table 6.2.2-1	Other members	$\frac{1.07 - 0.28 \left(\frac{b}{a}\right)^2}{1.07 - 0.28 \left(\frac{1}{a}\right)^2}$ but 1.0 for $\alpha > 2$	12	plate n	nembers. nrameter C_{Aspect} ,
		P _{ST-in1}	Longitudinal hull- girder structural- members	1.0		increas to aspe	expresses the se in strength due ect ratio, will be
Case 1	Gross scantling	To be in accordance with $4.4.3.2$	Other members	$\frac{1.07 - 0.28 \left(\frac{b}{\alpha}\right)^2}{1.07 - 0.28 \left(\frac{1}{\alpha}\right)^2}$ but 1.0 for $\alpha > 2$	12	longitu membe In addi	ed to apply to udinal strength ers as well. ition, the
Testing condition			Longitudinal hull- girder structural- members	1.0	-	-	sion b/a is ed to $1/\alpha$.
Case 2	Net scantling	P_{ST-in2} To be in accordance with 4.4.3.2	Other members	$ \frac{\frac{1}{\sqrt{1+\left(\frac{b}{a}\right)^{2}}}}{\sqrt{\frac{1}{1+\left(\frac{1}{a}\right)^{2}}}} $	16		
Flooded condition	Net scantling	P_{FD-in} To be in accordance with 4.4.4.1	Longitudinal hull- girder structural- members	1.0	16		

	to Part C of the Rules fo	JI Survey			21 Ships (2024 A	menun	
Amendee	1			Original			Remarks
			Other members	$ \frac{\frac{1}{1+\left(\frac{b}{a}\right)}}{\sqrt{\frac{1}{1+\left(\frac{1}{a}\right)}}} $	2 		
(Deleted)	Lor	ngitudinal hull <u>fr</u> rder structural <u>members</u>	Longitudinal raming system <u>Transverse</u> raming system	$\frac{C_{a} \text{ (for } \alpha \geq 2)}{\frac{C_{a}}{\sqrt{1 - \left(\frac{\sigma_{BM}}{\sigma_{Y}}\right)^{2}}}}$ $\frac{1.0 - \frac{ \sigma_{BM} }{\sigma_{Y}}}{\frac{1.0}{\sigma_{Y}}}$		

		Amended			Original		Remarks
		Та	ble 6.3.2- 3 2 Definit	tion of C_a (for α	< 2)		Amendment (5)
	Mem	ber	α	C_a	ζ	η	Revises the scope of
			<u>2 ≤ α</u>		<u>2</u>	<u>1</u> 	application for correction coefficient for the aspect ratio in the
	Longitudinal hull	Longitudinal framing system	<u>α < 2</u>	$\left[\left(\left \sigma_{\text{nu}} \right \right)^{\zeta} \right]^{\eta}$	2	$\frac{\frac{b}{\alpha}}{\frac{1}{\alpha}}$	local strength calculation formula of plate members.
	girder structural members	Transverse framing system	<u>α < 2</u>	$\left[1 - \left(\frac{ \sigma_{BM} }{\sigma_Y}\right)^{\zeta}\right]^{\eta}$	$\frac{2\frac{b}{a}}{2\frac{1}{\alpha}}$	1	Table 6.3.2-2. and Table 6.3.2-3. are combined into one table.
		framing system	<u>2 ≤ α</u>		1	<u>1</u>	In addition, the expression b/a is changed to $1/\alpha$.
6.4 6.4.	Stiffeners I General			6.4 Stiffend			
6.4.1 1 accord <u>2</u> accord	1.1 Application Stiffeners subject ance with the requence with the requence with the requence with the follow of the scantlings of the s	irements in 6.4.2. hin the cargo re owing (1) to (3) (S side frames in sin ce with 6.4.3.2 in frames abaft of c	gion are to be in	6.4.1.1 App 1 Stiffene accordance wit 2 Notwith	blication rs subject to late h the requirements	the side frames wit	Amendment (2) Clarifies the requirements regarding side frames: Reviews the composition so that the case divisions of application which was in 6.4.3 is newly specified in 6.4.1.1.

Amended	Original	Remarks
(2) The scantlings of side frames supporting deck		
transverses (except cantilever beams) for		
longitudinal framing systems are to be in accordance		
with 6.4.3.3 in addition to -1 above.		
(3) The scantlings of side frames supporting cantilever		
beams are to be in accordance with 7.2.3 to 7.2.6 in		
addition to -1 above. The bending moments and shear		
forces to be considered in applying 7.2.3 to 7.2.5 are to		
be in accordance with 7.2.2.1.		
Table 6.4.1-1 Side Fran	nes	(Newly Added)

	Single-deck ships	Multiple-deck ships
Side Frames	6.4.3.2 and 6.4.3.4	6.4.2
Side frames supporting deck transverses	6.4.3.2 and 6.4.3.3	6.4.2 and 6.4.3.3
Side frames supporting cantilever beams	6.4.3.2 and 7.2.2.1	6.4.2 and 7.2.2.1

6.4.1.2 Grouping of Stiffeners

The scantlings of stiffeners may be decided based on the concept of grouping stiffeners of equal scantlings<u>and</u> <u>specified minimum yield stresses</u> sequentially arranged between primary supporting members. The scantling of the group of stiffeners is to be taken as the greater of the values obtained from the following (1) and (2):

- (1) The average of the required scantlings of all stiffeners within a group
- (2) 90% of the maximum scantling required for any one stiffener within the group

6.4.1.2 Grouping of Stiffeners

The scantlings of stiffeners may be decided based on the concept of grouping stiffeners of equal scantlings sequentially arranged between primary supporting members. The scantling of the group of stiffeners is to be taken as the greater of the values obtained from the following (1) and (2):

- (1) The average of the required scantlings of all stiffeners within a group
- (2) 90% of the maximum scantling required for any one stiffener within the group

Amendment (9) Clarifies some definitions and corrects typographical errors:

Clarifies that stiffeners with different specified minimum yield stress cannot be included in the same group.

Amended	Original	Remarks
6.4.3 Side Frames	6.4.3 Side Frames	Amendment (2) Clarifies the requirements regarding side frames:
 6.4.3.1 General 1 Side frames are frames that fall under the following (1) and (2): (1) Frames supporting the side shell plating installed between the decks or side stringers in ships with multiple decks (2) Frames supporting the side shell plating in single deck ships 	 6.4.3.1 General 1 Side frames are frames that fall under the following (1) and (2): (1) Frames supporting the side shell plating installed between the decks or side stringers in ships with multiple decks (2) Frames supporting the side shell plating in single deck ships 	
Fig. 6.4.3-1 Side frames between decks	Side Frames Side frames (b) Single deck ship	Amendment (2) Clarifies the requirements regarding side frames: Replaces the figure because the lowest tier side frames of multi- deck ships are excluded from the application of 6.4.3 due to this amendment
(Deleted)	2 The scantlings of side frames in ships with multiple decks are to be in accordance with the following (1) to (4): (1) The scantlings of side frames between decks, except	Amendment (2) Clarifies the requirements regarding

Amended	Original	Remarks
(Deleted)	 the lowest tier side frames, are to be in accordance with 6.4.2, and are also to be determined in relation to such factors as the strength of the lowest tier side frames and the arrangement and transverse stiffness of bulkheads. (2) The scantlings of the lowest tier side frames are to be in accordance with 6.4.3.2. (3) The scantlings of side frames supporting deck transverses (except cantilever beams) for the longitudinal framing system are to be in accordance with 6.4.3.3. 3 The scantlings of side frames in single deck ships are to be in accordance with the following (1) and (2): (1) The scantlings are to comply with the requirements in 6.4.3.2 and 6.4.3.4. (2) In addition to (1) above, the requirements in 6.4.3.3 and 7.2.8.3 are to apply to deck transverses (except cantilever beams) for the longitudinal frames supporting cantilever beams, respectively. 	side frames: Transferred to 6.4.1.1 due to composition review Amendment (2) Clarifies the requirements regarding side frames: Transferred to 6.4.1.1 due to composition review
 6.4.3.2 <u>Side Frames in Single-Deck Ships</u> The scantlings of the side frames in single deck ships are to be in accordance with the following (1) and (2): (1) Bending strength 	6.4.3.2 <u>Side Frames in Single Deck Ships and Lowest</u> <u>Tier Side Frames in Ships with Multiple Decks</u> The scantlings of the side frames in single deck ships <u>and the lowest tier side frames in ships with multiple decks</u> are to be in accordance with the following (1) and (2): (1) Bending strength	Amendment (2) Clarifies the requirements regarding side frames: the lowest tier side frames of multi-deck ships are excluded from
The section modulus is to be not less than the value obtained from the following formula: $Z = C_{Safety} \frac{M_1 + M_2}{\sigma_Y} \times 10^3 (cm^3)$	The section modulus is to be not less than the value obtained from the following formula: $Z = C_{Safety} \frac{M_1 + M_2}{\sigma_Y} \times 10^3 (cm^3)$	the application of 6.4.3.2 and newly in accordance with 6.4.2

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

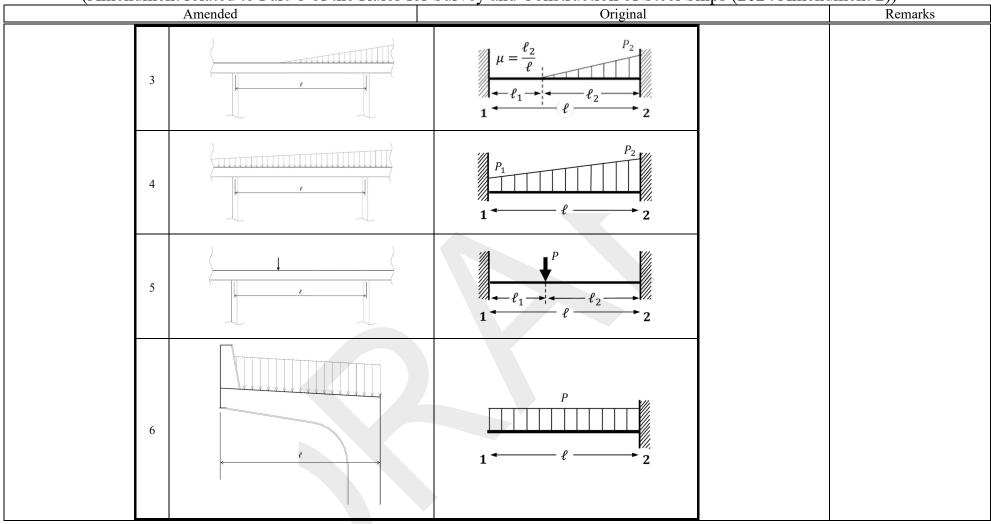
Amended	Original	Remarks
(Omitted)	(Omitted)	
		Amendment (2)
6.4.3.3 Side Frames Supporting Deck Transverses	6.4.3.3 Side Frames Supporting Deck Transverses	Clarifies the
The scantlings of side frames supporting deck transverses	The scantlings of side frames supporting deck transverses	requirements regarding
for the longitudinal framing system are to be in accordance with the following (1) and (2)	for the longitudinal framing system are to be in accordance with the following (1) and (2) in addition to the requirements	side frames:
with the following (1) and (2).	with the following (1) and (2) in addition to the requirements in $(4.2 \text{ cm} (4.2 cm$	
(Omitted) (1) Bending strength	$\frac{\text{in } 6.4.2 \text{ or } 6.4.3.2:}{(1)}$ Bonding strength	
(1) Bending strength The section modulus is to be not less than the value	(1) Bending strength The section modulus is to be not less than the value	
obtained from the following formula:	obtained from the following formula:	
$Z = C_{Safety} \frac{M_B}{\sigma_v} \times 10^3 (cm^3)$	$Z = C_{safety} \frac{M_B}{\sigma_V} \times 10^3 (cm^3)$	
C_{safety} : Safety factor taken as 1.0.	C_{safety} : Safety factor taken as 1.0.	
M_B : Bending moment (kN-m) at the upper end of the	M_B : Bending moment (kN-m) at the upper end of the	
frame according to the following formula:	frame according to the following formula:	
$M_B = \frac{k_t \ell_{1bdg}^2 s_1 (P_{lower} + 1.5P_{upper}) + 5P_{Deck} s_2 {\ell_2}^2}{30k_t + 40} \times 10^{-3}$	$M_B = \frac{k_t \ell_{1bdg}^2 s_1 (P_{lower} + 1.5P_{upper}) + 5P_{Deck} s_2 {\ell_2}^2}{30k_t + 40} \times 10^{-3}$	
	$M_B = \frac{30k_t + 40}{30k_t + 40} \times 10^{-5}$	
However, $k_t = 0.4s_2/s_1$	However, $k_t = 0.4s_2/s_1$	
ℓ_{1bdg} : Effective bending span (m) of the side	ℓ_{1bdg} : Effective bending span (m) of the side	
frame. Where a bracket is provided, the	frame. Where a bracket is provided, the	
end of the effective bending span is to be	end of the effective bending span is to be	
taken to the position where the depth of	taken to the position where the depth of	
the side frame and the bracket is equal	the side frame and the bracket is equal	
to $2h_w$, where h_w is the web depth of	to $2h_w$, where h_w is the web depth of	
side frame.	side frame.	
s_1 : Spacing (<i>mm</i>) of side frames	s_1 : Spacing (<i>mm</i>) of side frames	
ℓ_2 : Full length (<i>m</i>) of the deck transverse	ℓ_2 : Full length (<i>m</i>) of the deck transverse	
s_2 : Spacing (<i>mm</i>) of deck transverses	s_2 : Spacing (<i>mm</i>) of deck transverses	
P_{upper} : Lateral pressure (kN/m^2) due to the	P_{upper} : Lateral pressure (kN/m^2) due to the	
external pressure under the maximum	external pressure under the maximum	
load condition specified in 4.4.2, to be	load condition specified in 4.4.2, to be	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

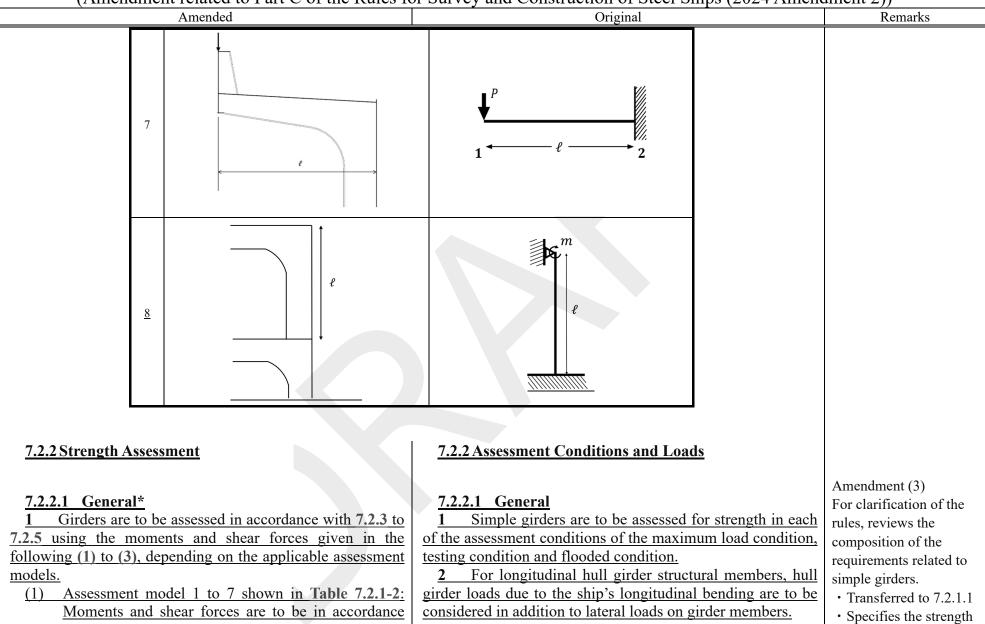
(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

	or Survey and Construction of Steel Snips (2024 Amend	,,,
Amended	Original	Remarks
Amendedcalculated at the upper end of the full length ℓ_1 of the side frame. P_{lower} : Lateral pressure (kN/m^2) due to the external pressure under the maximum load condition specified in 4.4.2, to be calculated at the lower end of the full length ℓ_1 of the side frame. P_{deck} : Average value of the lateral pressure (kN/m^2) on the deck, to be taken as the greater of the cargo load or green sea load under the maximum load condition specified in 4.4.2.2. When calculating green sea deck pressure as specified in 4.4.2.8, the value of coefficient a and the minimum value of P_{GW} are to be in accordance with Table 4.5.2-1. This P_{deck} is to be calculated at the midpoint of the full span of the deck transverse.(2) Shear strength (Omitted)	calculated at the upper end of the full length ℓ_1 of the side frame. P_{lower} : Lateral pressure (kN/m^2) due to the external pressure under the maximum load condition specified in 4.4.2, to be calculated at the lower end of the full length ℓ_1 of the side frame. P_{deck} : Average value of the lateral pressure (kN/m^2) on the deck, to be taken as the greater of the cargo load or green sea load under the maximum load condition specified in 4.4.2.2. This load is to be calculated at the midpoint of the full span of the deck transverse. (2) Shear strength (Omitted)	Amendment (9) Clarifies some definitions and corrects typographical errors: Specifies the reference of the value of coefficient a and the minimum value of P_{GW} in calculating green sea deck pressure P_{GW}
Chapter 7 STRENGTH OF PRIMARY	Chapter 7 STRENGTH OF PRIMARY	
SUPPORTING STRUCTURES	SUPPORTING STRUCTURES	
Symbols For symbols not defined in this Chapter, refer to 1.4. D_{DB} : When considering bending stiffness, depth (<i>m</i>) of double bottom is to be taken as the value at $x_{DH} = 0$ and $y_{DH} = 0$	Symbols For symbols not defined in this Chapter, refer to 1.4. D_{DB} : When considering bending stiffness, depth (<i>m</i>) of double bottom is to be taken as the value at $x_{DH} = 0$ and $y_{DH} = 0$	Amendment (9) Clarifies some definitions and corrects typographical errors: Clarifies the definition
$y_{DH} = 0$ D_{DS} : When considering bending stiffness, breadth (<i>m</i>) of	$y_{DH} = 0$ D_{DS} : When considering bending stiffness, breadth (<i>m</i>) of	of breadth of double

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))


	of Survey and Construction of Steel Ships (2024 Americ	//
Amended	Original	Remarks
double side is to be taken as the value at $x_{DH} = 0$ and	double side	side
$\underline{z_{DH}} = 0$	D_{DH} : Depth or breadth (<i>m</i>) of double hull, given as D_{DB} or	
D_{DH} : Depth or breadth (m) of double hull, given as D_{DB} or	D_{DS} , depending on whether assessing a double bottom or a	
D_{DS} , depending on whether assessing a double bottom or a	double side	
double side	x_{DB} : X coordinate with the $\frac{\ell_{DH}}{2}$ point in the double bottom	
x_{DB} : X coordinate with the $\frac{t_{DH}}{2}$ point in the double bottom	under assessment being $x_{DB} = 0$	
under assessment being $x_{DB} = 0$	x_{DS} : X coordinate with the $\frac{\ell_{DH}}{2}$ point in the double side	
x_{DS} : X coordinate with the $\frac{t_{DH}}{2}$ point in the double side	under assessment being $x_{DS} = 0$	
under assessment being $x_{DS} = 0$ x_{DH} : X coordinate, given as x_{DB} or x_{DS} , depending on	x_{DH} : X coordinate, given as x_{DB} or x_{DS} , depending on whether assessing a double bottom or a double side	
whether assessing a double bottom or a double side	y_{DH} : Y coordinate with the $\frac{B_{DB}}{2}$ point in the double bottom	
y_{DH} : Y coordinate with the $\frac{B_{DB}}{2}$ point in the double bottom	of the cargo hold under assessment being $y_{DH} = 0$	
of the cargo hold under assessment being $y_{DH} = 0$	z_{DH} : Z coordinate with the $B_{DS}/2$ point in the double side	
z_{DH} : Z coordinate with the $B_{DS}/2$ point in the double side	of the cargo hold under assessment being $z_{DH} = 0$	
of the cargo hold under assessment being $z_{DH} = 0$		
7.2 Simple Girders	7.2 Simple Girders	
-		
7.2.1 General	7.2.1 General	
7211 Assessment Conditions and Loads	7.2.1.1 Assessment Madels	Amendment (3)
7.2.1.1 Assessment Conditions and Loads	7.2.1.1 Assessment Models	For clarification of the
<u>1</u> For the members listed in Table 7.2.1-1 and the	<u>1</u> Girders are to be assessed by applying one of the	rules, reviews the
primary supporting structural strength members constituting	assessment models shown in Table 7.2.1-1 as appropriate for	composition of the
the boundaries of compartments, the strength assessments	the form of load distribution and the surrounding structural	requirements related to
specified in this Chapter are to be carried out considering the	arrangement. For cases not corresponding to any of the	simple girders.
lateral loads and hull girder loads specified in the table. For	assessment models shown in Table 7.2.1-1, girders are to be	The requirements
girders corresponding to multiple conditions, the strength	deemed appropriate by the Society.	remain unchanged.
assessments are to be carried out under all applicable	2 Notwithstanding -1 above, the specific assessment	• Transferred to 7.2.1.2
conditions.	models for the ship types specified in Part 2 are to be referred	
2 Simple girders are to be assessed for strength in each	to Chapter 7, Part 2. For members not specifically specified	

			l buivey un			Ships (2024 Ai	//	
Amended					Original		Remark	S
of the assessment conditions of the maximum	n load cond	dition,	in Chapter 7, Part 2, applied models are to be deemed			med		
testing condition and flooded condition.			appropriate by the Society.					
3 For longitudinal hull girder structura	<u>s, hull</u>	<u>3</u> Whe	re multiple lo	oads act simul	taneously, as in c	ases		
girder loads due to the ship's longitudinal be	ending are	e to be	with distribut	ited and conce	entrated loads a	acting simultaneo	usly,	
considered in addition to lateral loads on gird	ler member	ers.	assessments	are to be	e carried ou	<u>t by applying</u>	the	
4 Lateral loads are, in general, assumed	d to act from	om one	<u>correspondi</u>	ng multiple as	ssessment mod	els.		
side of the girder members. However, when	re any load	ids are						
constantly acting from the other side, such loa	ads may be	e taken						
into account.	-							
Table 7.2.21-1 Assessment C	onditions a	and Loa	ads for Membe	ers/Compartm	ents to be Asse	essed	Amendment (3)	
				Loads			For clarification	n of the
				Loaus			rules, reviews th	ne
¹ Typical members	sessment				Ref	fer to:	composition of	the
to be assessed rypical memoers co		Lateral	Load type	Load	$\mathbf{L} = \mathbf{I}(\mathbf{D})$	Hull girder load	requirements re	lated to
	1	load		components	Load (P)	(M_{V-HG}, M_{H-HG})	simple girders.	
Web frames						(HV - HG, HH - HG)		
(including multiple-	-						• Add "Web f	rames
deck ships), side		xternal	Seawater	Static +	4.4.2.2-1		supporting cant	ilever
stringers (single	pro	ressure		dynamic loads			beams" as type	
side skin structure)							members.	
Girders on shell plating			Green sea				Transferred f	rom
Web frames Ma	aximum		(weather decks	Green sea load,	Greater of the		Table 7.2.2-1	loin
supporting	load O	Others	<u>only),</u> Unspecified	static +	pressures specified in	4.4.2.9	10010 7.2.2 1	
cantilever beams co	ondition		cargoes on the	dynamic loads	4.4.2.2-3 and -4			
			deck, etc.		<u>2.2-5 and</u>			
Cargo oil tanks, ballast Stiffening girders,								
tanks, ballast holds and corrugated		nternal ressure	Liquid loaded	Static + dynamic loads	4.4.2.2-2			
other tanks bulkheads	pre	ressure		dynamic iodus				


	Amended					Original	Ships (2024 A	Remarks
Cargo holds ⁽¹⁾	Stiffening girders, corrugated bulkheads			Dry bulk cargoes and others	Static + dynamic loads			
Single-bottomed cargo holds	Girders, floors			Unspecified Cargoes on the deck	Static + dynamic loads			
Girders on deck	Deck girders, deck transverses		Others	Green sea (weather decks only), unspecified <u>Cargoes on the</u> <u>deck</u>	Green sea load, static + dynamic loads	Greater of the pressures specified in 4.4.2.2-3 and -4		
Internal decks ⁽²⁾	Deck girders, deck transverses			Unspecified Cargoes <u>on the</u> deck	Static + dynamic loads	4.4.2.2-3		
Members constituting compartments subject to hydraulic testing	Stiffening girders, corrugated bulkheads	Testing condition	Internal pressure	Seawater	Static loads	P_{ST-in1} as specified in 4.4.3.2	4.4.4.3	
Compartments not carrying liquids ⁽³⁾	Stiffening girders, corrugated bulkheads	Flooded condition	Internal pressure	Seawater	-	4.4.4.1	4.4.4.2	
(2) For ships carrying loads can be deem plating and the inte	le side skin structure f cargoes other than bu ned as acting only on ernal deck. irders on shell plating	Ik and liquid c the inner bottor	argoes with n plating ar	the cargoes properly	y fastened or othe	rwise held in positi	on so that the cargo	
				Ì				
2.1.2 Assessment Girders are to b		applying or	ne of the	,				Amendment (3) For clarification of t rules, reviews the

(Amendment related to Part C of the Rule	es for Survey and Construction	of Steel Ships	(2024 Amendment 2))
•		2	1	

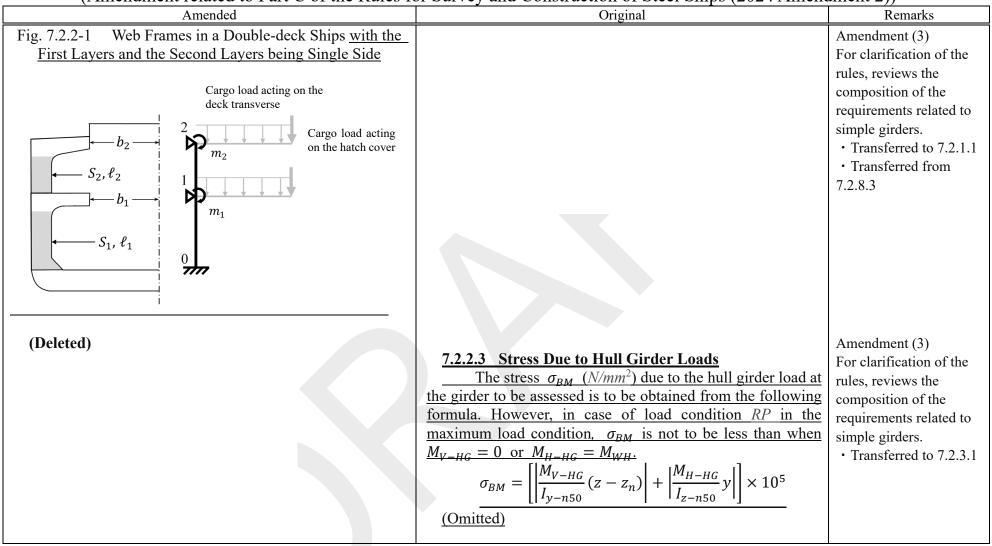
	*11101	Amended	Original	Remarks
	• , ••		Originai	
		oution and the surrounding structural		requirements related to
		s not corresponding to any of the		simple girders.
		vn in Table 7.2.1-2, girders are to be		Transferred from
deemed appropriate				7.2.1.1
2 Notwithstan	nding	-1 above, reference is to be made to		
Chapter 7, Part 2	2 wit	h respect to the specific assessment		
models for the ship	types	s specified in Part 2. For members not		
-		Chapter 7, Part 2, applied models		
		ropriate by the Society.		
		loads act simultaneously, as in cases		
	_	centrated loads acting simultaneously,		
		be carried out by applying the		
corresponding mult				
<u>corresponding mun</u>	ipic a	assessment models.		
		Table 7.2.1-12 Examples of Struct	tures and Assessment Models	Amendment (3)
Г		Examples of structures	Assessment models	For clarification of the
		Examples of structures	Assessment models	rules, reviews the
			$// \longrightarrow x P$	
				composition of the
	1	e		requirements related to
			$\ell \longrightarrow 2^{m}$	simple girders.
				• Transferred from
			D	Table 7.2.1-1
				• Add the assessment
	2			model 8
	2	e		
			$\ell \longrightarrow 2^{m}$	
		ţ		

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

(Amendment related to Part C of the Rules for	r Survey and Construction of Steel Ship	os (2024 Amendment 2))

Amended	Original	Remarks
with Table 7.2.2-1.	3 Lateral loads are, in general, assumed to act from one	assessment method
(2) Assessment model 8 shown in Table 7.2.1-2:	side of the girder members. However, where any loads are	
Moments and shear forces are to be in accordance	constantly acting from the other side, such loads may be taken	
with 7.2.2.2.	into account.	
(3) For cases not corresponding to (1) and (2) above,	4 Girder members constituting watertight boundaries of	
applied models are to be deemed appropriate by the	compartments not intended to carry liquids, excluding girders	
Society.	on the shell plating and weather deck, are to be subjected to	
2 Corrugated bulkheads are to be assessed in accordance	lateral loads in the flooded condition.	
with 7.2.7.		

	Amended		Original	Remarks
	Table 7.2. 3 2-	1 Moments and Shear Forces		Amendment (3)
	Assessment model	М	F	For clarification of the
1	$x \qquad P$ $1 \qquad \ell \qquad 2$	$M_1 = M_2 = \frac{SP\ell_{bdg}^2}{12}$	$F_1 = F_2 = \frac{SP\ell_{shr}}{2}$	rules, reviews the composition of the requirements related to simple girders. • Transferred from
2	P_2 P_2 $1 \qquad \ell \qquad 2$	$M_{1} = \frac{SP_{2}\ell_{bdg}^{2}}{30}$ $M_{2} = \frac{SP_{2}\ell_{bdg}^{2}}{20}$	$F_1 = \frac{3SP_2\ell_{shr}}{20}$ $F_2 = \frac{7SP_2\ell_{shr}}{20}$	Table 7.2.3-1 • Add Table 7.2.9-1 to assessment model 6 and 7 and note • Modifies the references due to
3	$\mu = \frac{\ell_2}{\ell} \qquad \qquad P_2$ $\mu = \frac{\ell_2}{\ell} \qquad \qquad P_2$ $\mu = \frac{\ell_2}{\ell} \qquad \qquad P_2$	$M_{1} = -\frac{SP_{2}\ell_{bdg}^{2}}{60}(3\mu^{4} - 5\mu^{3})$ $M_{2} = \frac{SP_{2}\ell_{bdg}^{2}}{60}(3\mu^{4} - 10\mu^{3} + 10\mu^{2})$	$F_{1} = -\frac{SP_{2}\ell_{shr}}{20}(2\mu^{4} - 5\mu^{3})$ $F_{2} = \frac{SP_{2}\ell_{shr}}{20}(2\mu^{4} - 5\mu^{3} + 10\mu)$	composition review
4	$\begin{array}{c} P_1 \\ P_1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 2 \end{array}$	$M_{1} = \frac{S\ell_{bdg}^{2}}{60}(3P_{1} + 2P_{2})$ $M_{2} = \frac{S\ell_{bdg}^{2}}{60}(2P_{1} + 3P_{2})$	$F_{1} = \frac{S\ell_{shr}}{20}(7P_{1} + 3P_{2})$ $F_{2} = \frac{S\ell_{shr}}{20}(3P_{1} + 7P_{2})$	
5	$ \begin{array}{c} $	$M_1 = P\mu_1\mu_2^2 \ell_{bdg}$ $M_2 = P\mu_1^2\mu_2 \ell_{bdg}$	$F_1 = P\mu_2^2(3\mu_1 + \mu_2)$ $F_2 = P\mu_1^2(3\mu_2 + \mu_1)$	


	(Amendment related to Part C of the R	ules for Survey and Const	ruction of Steel Ships (2024 Am	endment 2))
Amended			Original	Remarks
<u>6</u>	P $1 \longrightarrow \ell \longrightarrow 2$	$M_2 = \frac{SP\ell_{bdg}^2}{2}$	$\underline{F_2 = SP\ell_{shr}}$	
7		$\underline{M_2 = P\ell_{bdg}}$	$\underline{F_2 = P}$	
	Effective shear span (m) of the girder as given in 3.6.1.5 Load corresponding to each assessment condition specified Assessment Model 1: Uniform load (kN/m^2) acting on the Assessment Model 5: Concentrated load (kN) acting on the Assessment Model 6: Average lateral load (kN/m^2) acting o load condition specified in 4.4.2.2. T	in Table 7.2.2 <u>1</u> -1 to be taken as follows girder e girder <u>n the deck to be taken as the greater of the</u> <u>'hese loads are to be calculated at the mid</u>	e cargo load or green sea load in the maximum dpoint of the span ℓ .	
-	Assessment Model 7: Load (kN) due to the cargo loaded o $\frac{P_B = SBP_h}{B: A half of the breadth (m) of the hatch in the}{P_h: Load (kN/m^2) acting on the hatch cover as so ad P_2: Loads corresponding to each assessment condition sp sment Models 2, 3 and 4: Loads (kN/m^2) acting on the ends o$	deck supported by deck transverses pecified in 4.4.2.7 or 4.10.2.1 ecified in Table 7.2.2 <u>1</u> -1 to be taken as t	follows depending on the assessment model:	
7.2.2.2 Fo pending n with the fo (1) W	<u>Web Frames Supporting Cantilever Beam</u> or web frames supporting cantilever beams noments and shear forces are to be in accor <u>ollowing (1) or (2).</u> Veb frames in double-deck ships with the first eing double side and the second layers being	<u>s</u> <u>7.2.2.2 Assessmen</u> <u>s, the</u> <u>to Be Asse</u> <u>dance</u> <u>For the mem</u> <u>primary supporting st</u> <u>layers</u> <u>the boundaries of co</u>	nt Conditions and Loads for Membe	rules, reviews the composition of the requirements related to simple girders.

(Amendment related to Part C of	of the Rules for Surve	ev and Construction of	Steel Ships ((2024 Amendment 2))
			1		

	of Survey and Construction of Steel Ships (2024 Americ	
Amended	Original	Remarks
side, single-deck ships, multi-deck ships with three or	lateral loads and hull girder loads specified in the table. For	• Transferred to 7.2.1.1
more decks:	girders corresponding to multiple conditions, the strength	 Transferred from
<u>i) Moment</u>	assessments are to be carried out under all applicable	7.2.8.3
m	conditions.	 changes the usage of
ii) Shear force		variable i
3 m		
$\overline{2\ell}$		
<u>m:</u> Moment acting on the upper ends of web		
frames to be assessed, as follows:		
$\underline{m} = \underline{M}_d + \underline{M}_h$		
M_d : Moment (kN-m) due to the cargo		
loaded on the deck or wave loads to		
be obtained from Assessment Model		
6 shown in Table 7.2.2-1. However,		
ℓ is to be used for calculation		
instead of ℓ_{bdg} .		
M_h : Moment (kN-m) due to the cargo		
loaded on the hatch cover or wave		
loads to be obtained from		
Assessment Model 7 shown in Table		
7.2.2-1. However, ℓ is to be used		
for calculation instead of ℓ_{bda} .		
ℓ : Span (<i>m</i>) of the web frame to be assessed		
(2) Web frames in double-deck ships with the first layers		
and the second layers being single side		
(a) Web frame in the first tier from the inner bottom		
plating:	*	
i) Moment		
$0.6 m_1 $		
ii) Shear force		

(Amendment related to Part C of the Rules for	or Survey and Construction of Steel Ships (2024 Amend	lment 2))
Amended	Original	Remarks

Amended	Original	Remarks
$0.9 \left \frac{m_1}{\ell_1} \right $		
(b) Web frame in the second tier:		
<u>i) Moment</u>		
$\max(0.25m_2 + 0.5m_1 , m_2)$		
ii) Shear force		
$\frac{ \frac{0.5m_1 + 1.25m_2}{\ell_2} }{ \ell_2 }$		
$\underline{m_1}, \ \underline{m_2}$: Moment acting on the upper ends of		
web frames in the first and second		
tier from the inner bottom plating, in		
accordance with (1) above (See Fig.		
<u>7.2.2-1)</u>		
ℓ_1, ℓ_2 : Span (m) of the web frame in the first		
and the second tier from the inner		
bottom plating		

Amended	Original	Remarks
7.2.3 Bending Strength 7.2.3 Bending Strength 7.2.3.1 Section Modulus In each assessment condition, the section modulus of simple girders is to be not less than that obtained from the following formula: $Z_{n50} = C_{Safety} \frac{ M }{\sigma_{all} - \sigma_{BM}} \times 10^3 (cm^3)$ C_{Safety} : Safety factor, to be taken as 1.1 M: Maximum moment (kN - m) of the assessment model as specified in 7.2.2.1 σ_{all} : Permissible bending stress (N/mm^2) to be taken as follows: $\sigma_{all} = \frac{235}{K}$ K: Material factor as specified in 3.2.1.2 σ_{BM} : Stress (N/mm^2) due to the hull girder load at the girder to be assessed as follows. However, in case of load condition RP in the maximum load condition, σ_{BM} is not to be less than when $M_{V-HG} = 0$ or $M_{H-HG} = M_{WH}$. In addition, for members other than longitudinal hull girder structural members, σ_{BM} is to be taken as 0. $\sigma_{BM} = \left[\left \frac{M_{V-HG}}{I_{y-n50}} (z - z_n) \right + \left \frac{M_{H-HG}}{I_{z-n50}} y \right \right] \times 10^5$ M_{V-HG} : Hull girder load (vertical bending moment) corresponding to each assessment condition specified in Table 7.2.1-1 M_{H-HG} : Hull girder load (horizontal bending moment) considered in maximum load	7.2.3 Bending Strength 7.2.3 Bending Strength 7.2.3.1 Section Modulus In each assessment condition, the section modulus of simple girders is to be not less than that obtained from the following formula: $Z_{n50} = C_{safety} \frac{ M }{\sigma_{all} - \sigma_{BM}} \times 10^3 (cm^3)$ C_{safety} : Safety factor, to be taken as 1.1 <i>M</i> : Maximum moment (<i>kN-m</i>) of the assessment model as specified in 7.2.3.2 σ_{all} : Permissible bending stress (<i>N/mm</i> ²) to be taken as follows: $\sigma_{all} = \frac{235}{K}$ <i>K</i> : Material factor as specified in 3.2.1.2 σ_{BM} : Stress (<i>N/mm</i> ²) due to the hull girder load at the girder to be assessed as specified in 7.2.2.3. <u>However</u> , for members other than longitudinal hull girder structural members, σ_{BM} is to be taken as 0.	Amendment (3) For clarification of the rules, reviews the composition of the requirements related to simple girders. • Modifies the reference

	or Survey and Construction of Steel Ships (2024 Amend	,,,
Amended	Original	Remarks
condition, as specified in 4.4.2.9-2.		
$M_{H-HG} = 0$ in load conditions other than		
maximum load condition.		
<u>M_{WH}: Horizontal wave bending moment (kN-m)</u>		
specified in 4.4.2.9-2		
I_{y-n50} : Moment of inertia (cm^4) of the hull		
transverse section under consideration about		
its horizontal neutral axis. Corrosion		
additions considered in the calculation are as		
specified in 3.3.4.		
I_{z-n50} : Moment of inertia (cm^4) of the hull		
transverse section under consideration about		
its vertical neutral axis. Corrosion additions		
considered in the calculation are as specified		
<u>in 3.3.4.</u>		
z: Z coordinate (m) of the load calculation point for		
the member under consideration		
z_n Vertical distance (m) from the top of the keel in		
the transverse section under consideration to its		
horizontal neutral axis		
<u>y:</u> Y coordinate (m) of the load calculation point for		
the member under consideration		
The coordinate system and the load calculation points are as		
given in 1.4.3.6 and 3.7.3, respectively.		
	7000 M (Amendment (3)
(Deleted)	<u>7.2.3.2 Moments</u>	For clarification of the
	<u>1</u> Members of interest are to be assessed based on the	rules, reviews the
	moment in an appropriate assessment model selected from	composition of the
	Table 7.2.3-1 according to their boundary condition and load	requirements related to
	distribution. For cases not corresponding to any of the	simple girders.
	assessment models shown in Table 7.2.3-1, moments are to be	• Deleted due to
	deemed appropriate by the Society.	composition review

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment
--

Amended	Original	Remarks
	2 Where multiple loads act simultaneously, as in cases where distributed and concentrated loads act simultaneously, the assessment is to be carried out by the summation of the moments in the respective assessment models.	
7.2.4 Shear Strength	7.2.4 Shear Strength	
7.2.4.1 Web Thickness In each assessment condition, the web thickness of simple girders is to be not less than that obtained from the following formula: $t_{n50} = C_{safety} \frac{ F }{D_{sh-n50}\tau_{all}} (mm)$ $C_{safety}: \text{Safety factor to be taken as 1.2}$ $F: \text{ Maximum shear force } (kN) \text{ of the assessment model as specified in } \underline{7.2.2.1}$ $D_{sh-n50}: \text{Shear depth } (m) \text{ as given in } 3.6.4.5$ $\tau_{all}: \text{ Permissible shear stress } (N/mm^2) \text{ to be taken as follows:}$ $\tau_{all} = \frac{235}{K\sqrt{3}}$	7.2.4.1 Web Thickness In each assessment condition, the web thickness of simple girders is to be not less than that obtained from the following formula: $t_{n50} = C_{safety} \frac{ F }{D_{sh-n50}\tau_{all}} (mm)$ $C_{safety}: \text{ Safety factor to be taken as 1.2}$ $F: \text{ Maximum shear force } (kN) \text{ of the assessment model as specified in } \underline{7.2.4.2}$ $D_{sh-n50}: \text{Shear depth } (m) \text{ as given in } \underline{3.6.4.5}$ $\tau_{all}: \text{ Permissible shear stress } (N/mm^2) \text{ to be taken as follows:}$ $\tau_{all} = \frac{235}{K\sqrt{3}}$	Amendment (3) For clarification of the rules, reviews the composition of the requirements related to simple girders. • Modifies the reference due to composition review
<i>K</i> : Material factor as specified in 3.2.1.2 (Deleted)	 K:Material factor as specified in 3.2.1.2 7.2.4.2 Shear Forces Members of interest are to be assessed based on the shear force in an appropriate assessment model selected from Table 7.2.3-1 according to their boundary condition and load distribution. For cases not corresponding to any of the assessment models shown in Table 7.2.3-1, Shear forces are to be deemed appropriate by the Society. Where multiple loads act simultaneously, as in cases 	Amendment (3) For clarification of the rules, reviews the composition of the requirements related to simple girders. • Deleted due to composition review

	Original	Remarks
Amended7.2.5Shear Buckling Strength7.2.5.1Web ThicknessThe web thickness of simple girders is to be not lessthan that obtained from the formulae shown in the following(1) to (3) for each assessment condition:(1)For girder webs with no opening $t = \sqrt[3]{C_{safety}} \frac{ F b^2}{D_w} \frac{12(1-v^2)}{K_\tau \pi^2 E}$ (mm) C_{safety} : Safety factor to be taken as 1.2F:Maximum shear force (kN) of the assessment model as specified in 7.2.2.1 D_w : Web depth (m) of the primary supporting members (See Fig. 7.2.5-1)	where distributed and concentrated loads are applied simultaneously, the assessment is to be carried out by the summation of the shear forces in the respective assessment models. 7.2.5 Shear Buckling Strength 7.2.5.1 Web Thickness The web thickness of simple girders is to be not less than that obtained from the formulae shown in the following (1) to (3) for each assessment condition: (1) For girder webs with no opening $t = \sqrt[3]{C_{safety}} \frac{ F b^2}{D_w} \frac{12(1-v^2)}{K_\tau \pi^2 E} (mm)$ $C_{safety}: Safety factor to be taken as 1.2$ F: Maximum shear force (kN) of the assessment model as specified in 7.2.4.2 $D_w: Web depth (m) of the primary supporting members (See Fig. 7.2.5-1)$	//

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

	Original	Remarks
Amended		NUMAIKS
length is to be the greatest of the lengths	length is to be the greatest of the lengths	
of the resulting shorter sides. (See Fig.	of the resulting shorter sides. (See Fig.	
7.2.5-1)	7.2.5-1)	
ν : Poisson's ratio to be taken as 0.3	ν : Poisson's ratio to be taken as 0.3	
<i>E</i> : Young's modulus to be taken as $206,000 (N/mm^2)$	<i>E</i> : Young's modulus to be taken as $206,000 (N/mm^2)$	
(2) For girder webs provided with an opening reinforced	(2) For girder webs provided with an opening reinforced	
by stiffeners in the girder span direction	by stiffeners in the girder span direction	
$ F h^2 + 12(1 - \nu^2)$	$ E h^2 + 12(1 - y^2)$	
$t = \int_{1}^{3} C_{Safety} \frac{ F b^2}{D_w - D_0} \frac{12(1 - \nu^2)}{K_\tau \pi^2 E} (mm)$	$t = \sqrt[3]{C_{safety} \frac{ F b^2}{D_w - D_0} \frac{12(1 - \nu^2)}{K_\tau \pi^2 E}} (mm)$	
$\int \int \frac{\partial u}{\partial t} \frac{\partial u}{\partial t} D_w - D_0 = K_\tau \pi^2 E$	$\sqrt{\frac{Supery}{D_W} - D_0} = K_\tau \pi^2 E$	
C_{Safety} : Safety factor to be taken as 1.2	C_{safety} : Safety factor to be taken as 1.2	
F: Maximum shear force (kN) of the assessment	F: Maximum shear force (kN) of the assessment	
model as specified in 7.2.2.1	model as specified in 7.2.4.2	
D_W : Web depth (m) of the primary supporting	D_W : Web depth (m) of the primary supporting	
members (<i>See</i> Fig. 7.2.5-2)	members (See Fig. 7.2.5-2)	
K_{τ} : Shear buckling factor to be taken as follows:	K_{τ} : Shear buckling factor to be taken as follows:	
$K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$	$K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$	
Ct .	$K_{\tau} = 5.34 + \frac{1}{\alpha^2}$	
D_0 : Size (m) of manholes and other openings in the	D_0 : Size (m) of manholes and other openings in the	
girder depth direction (See Fig. 7.2.5-2)	girder depth direction (See Fig. 7.2.5-2)	
α : Panel aspect ratio to be taken as follows:	α : Panel aspect ratio to be taken as follows:	
$\alpha - \frac{a}{2}$	$\alpha - \frac{a}{2}$	
$\alpha = \overline{b}$	$\alpha = \overline{b}$	
a: Length (<i>mm</i>) of the longer side of the plate	a: Length (<i>mm</i>) of the longer side of the plate	
panel (See Fig. 7.2.5-2)	panel (See Fig. 7.2.5-2)	
b: Length (<i>mm</i>) of the shorter side of the plate	b: Length (<i>mm</i>) of the shorter side of the plate	
panel, which is to be the greatest of the	panel, which is to be the greatest of the	
lengths of the resulting shorter sides (See	lengths of the resulting shorter sides (See	
Fig. 7.2.5-2)	Fig. 7.2.5-2)	
ν : Poisson's ratio to be taken as 0.3	ν : Poisson's ratio to be taken as 0.3	
<i>E</i> : Young's modulus to be taken as $206,000 (N/mm^2)$	<i>E</i> : Young's modulus to be taken as $206,000 (N/mm^2)$	
(3) For girder webs provided with an opening (an	(3) For girder webs provided with an opening (an	

unreinforced opening) $t = \sqrt[3]{C_{safety}} \frac{ F b^2}{D_w} \frac{12(1-v^2)}{\gamma_{a_0} k_{\pi} \pi^2 E} (mm)}{\sum_{safety} Safety factor to be taken as 1.2} (mm)}$ $C_{safety} Safety factor to be taken as 1.2$ $F: Maximum shear force (kN) of the assessment model as specified in 7.2.2.1} DW: Web depth (m) of the primary supporting members (See Fig. 7.2.5-3) K_{\tau}: \text{ Shear buckling factor to be taken as follows:} K_{\tau} = 5.34 + \frac{4.0}{a^2} \gamma_{a_0}: \text{ Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows:} \gamma_{a_0}: \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} D_0: \text{ Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) a: Panel aspect ratio to be taken as follows: \alpha = \frac{a}{b} a: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See F$	$t = \sqrt[3]{C_{safety}} \frac{ F b^2}{D_w} \frac{12(1-v^2)}{\gamma_{a_0} k_{\tau} \pi^2 E} (mm)}{C_{safety}}$ $c_{safety}: Safety factor to be taken as 1.2$ $F: Maximum shear force (kN) of the assessment model as specified in 7.2.2.1 D_W: Web depth (m) of the primary supporting members (See Fig. 7.2.5-3) K_{\tau}: Shear buckling factor to be taken as follows: k_{\tau} = 5.34 + \frac{4.0}{\alpha^2} \gamma_{a_0}: Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: \gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} D_0: Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) a: Panel aspect ratio to be taken as follows: \alpha = \frac{a}{b} a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)$	Amended	Original	Remarks
$\begin{aligned} C_{Safety}: \text{Safety factor to be taken as } 1.2 \\ F: Maximum shear force (kN) of the assessment model as specified in \underline{7.2.2.1}D_W: \text{Web depth } (m) \text{ of the primary supporting members } (See \text{ Fig. } 7.2.5-3) \\ K_{\tau}: \text{ Shear buckling factor to be taken as follows:} \\ K_{\tau} = 5.34 + \frac{4.0}{\alpha^2} \\ y_{a_0}: \text{Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows:} \\ \gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} \\ D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. } 7.2.5-3) \\ \alpha: \text{ Panel aspect ratio to be taken as follows:} \\ \alpha = \frac{a}{b} \\ a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. } 7.2.5-3) \\ c. \text{ Length } (mm) of the shorter side of$	$\begin{aligned} & C_{safety}: \text{Safety factor to be taken as } 1.2 \\ F: \text{ Maximum shear force } (kN) \text{ of the assessment model as specified in } \underline{7.2.2.1} \\ & D_W: \text{Web depth } (m) \text{ of the primary supporting members } (See Fig. 7.2.5-3) \\ & K_{\tau}: \text{ Shear buckling factor to be taken as follows:} \\ & K_{\tau} = 5.34 + \frac{4.0}{\alpha^2} \\ & y_{a_0}: \text{Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows:} \\ & \gamma_{a_0}: \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} \\ & D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See Fig. 7.2.5-3) \\ & \alpha: \text{ Panel aspect ratio to be taken as follows:} \\ & \alpha = \frac{a}{b} \\ & \alpha: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See Fig. 7.2.5-3) \\ & b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See Fig. 7.2.5-3) \\ & v: \text{ Poisson's ratio to be taken as } 0.3 \end{aligned}$	unreinforced opening)	unreinforced opening)	
F: Maximum shear force (kN) of the assessment model as specified in 7.2.2.1 D_W : Web depth (m) of the primary supporting members (See Fig. 7.2.5-3) K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$ γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)	F: Maximum shear force (kN) of the assessment model as specified in 7.2.2.1 D_W : Web depth (m) of the primary supporting members (See Fig. 7.2.5-3) K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{a^2}$ y_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $y_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) a: Panel aspect ratio to be taken as follows: $a = \frac{a}{b}$ a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) v: Poisson's ratio to be taken as 0.3 v: Poisson's ratio to be taken as 0.3 v: Poisson's ratio to be taken as 0.3 v: Poisson's ratio to be taken as 0.3	$t = \sqrt[3]{C_{Safety} \frac{ F b^2}{D_w} \frac{12(1-\nu^2)}{\gamma_{a_0} K_\tau \pi^2 E}} (mm)$	$t = \sqrt[3]{C_{Safety} \frac{ F b^2}{D_w} \frac{12(1-\nu^2)}{\gamma_{a_0} K_\tau \pi^2 E}} (mm)$	
model as specified in 7.2.2.1 D_W : Web depth (m) of the primary supporting members (See Fig. 7.2.5-3) K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$ γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)	model as specified in <u>7.2.2.1</u> D_W : Web depth (m) of the primary supporting members (See Fig. 7.2.5-3) K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$ γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) ψ : Poisson's ratio to be taken as 0.3 ψ : Poisson's ratio to be taken as 0.3 ψ : Poisson's ratio to be taken as 0.3	C_{Safety} : Safety factor to be taken as 1.2	C_{Safety} : Safety factor to be taken as 1.2	
members (See Fig. 7.2.5-3) K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$ γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Description of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Description of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) c: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)	members (See Fig. 7.2.5-3) K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{a^2}$ γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) ν : Poisson's ratio to be taken as 0.3 ν : Poisson's ratio to be taken as 0.3			
$K_{\tau}: \text{ Shear buckling factor to be taken as follows:} K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$ $\gamma_{a_0}: \text{Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: \gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. 7.2.5-3}) \alpha: \text{ Panel aspect ratio to be taken as follows:} \alpha = \frac{a}{b} \alpha: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. 7.2.5-3}) b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$	K_{τ} : Shear buckling factor to be taken as follows: $K_{\tau} = 5.34 + \frac{4.0}{\alpha^2}$ γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ D_0 : Size (m) of manholes and other openings in the girder depth direction (See Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) ν : Poisson's ratio to be taken as 0.3			
$y_{a_0}: \text{Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: y_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} D_0: \text{Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. 7.2.5-3}) \alpha: \text{ Panel aspect ratio to be taken as follows:} \alpha = \frac{a}{b} a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. 7.2.5-3}) b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3}) b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$	$ \begin{aligned} \gamma_{a_0}: \text{ Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: \\ \gamma_{a_0} &= \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} \\ D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See Fig. 7.2.5-3) \\ \alpha: \text{ Panel aspect ratio to be taken as follows:} \\ \alpha &= \frac{a}{b} \\ a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See Fig. 7.2.5-3) \\ b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See Fig. 7.2.5-3) \\ \nu: \text{ Poisson's ratio to be taken as } 0.3 \end{aligned} $	K_{τ} : Shear buckling factor to be taken as follows:	K_{τ} : Shear buckling factor to be taken as follows:	
$\gamma_{a_0}: \text{ Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: \gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. 7.2.5-3}) \alpha: \text{ Panel aspect ratio to be taken as follows:} \alpha = \frac{a}{b} a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. 7.2.5-3}) b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3}) b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$	$ \begin{aligned} \gamma_{a_0}: \text{ Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows: \\ \gamma_{a_0} &= \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2} \\ D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See Fig. 7.2.5-3) \\ \alpha: \text{ Panel aspect ratio to be taken as follows:} \\ \alpha &= \frac{a}{b} \\ a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See Fig. 7.2.5-3) \\ b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See Fig. 7.2.5-3) \\ \nu: \text{ Poisson's ratio to be taken as } 0.3 \end{aligned} $	$K_{\tau} = 5.34 + \frac{\alpha^2}{\alpha^2}$	$K_{\tau} = 5.34 + \frac{\alpha}{\alpha^2}$	
follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ follows: $\alpha = \frac{a}{b}$	follows: $\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ $D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. 7.2.5-3})$ $\alpha: \text{ Panel aspect ratio to be taken as follows:}$ $\alpha = \frac{a}{b}$ $a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$	γ_{a_0} : Coefficient of the effect of an opening, such as a	γ_{a_0} : Coefficient of the effect of an opening, such as a	
$\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ $D_0: \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. 7.2.5-3})$ $\alpha: \text{ Panel aspect ratio to be taken as follows:}$ $\alpha = \frac{a}{b}$ $\alpha: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$	$\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$ $p_{0:} \text{ Size } (m) \text{ of manholes and other openings in the girder depth direction } (See \text{ Fig. 7.2.5-3})$ $\alpha: \text{ Panel aspect ratio to be taken as follows:}$ $\alpha = \frac{a}{b}$ $a: \text{ Length } (mm) \text{ of the longer side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel } (See \text{ Fig. 7.2.5-3})$ $v: \text{ Poisson's ratio to be taken as } 0.3$ $v: \text{ Poisson's ratio to be taken as } 0.3$			
the girder depth direction (<i>See</i> Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (<i>mm</i>) of the longer side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) c: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) c: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3)	the girder depth direction (<i>See</i> Fig. 7.2.5-3) α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (<i>mm</i>) of the longer side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Development (<i>See</i> Fig. 7.2.5-3) b: Developm			
α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) α : Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b : Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b : Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)	α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ α : Panel aspect ratio to be taken as follows: $\alpha = \frac{a}{b}$ $\alpha = \frac{a}{b}$ α : Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) α : Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) ν : Poisson's ratio to be taken as 0.3 ν : Poisson's ratio to be taken as 0.3	° ()	° ()	
$\alpha = \frac{a}{b}$ a: Length (<i>mm</i>) of the longer side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3) b: Length (<i>mm</i>) of the shorter side of the plate panel (<i>See</i> Fig. 7.2.5-3)	$\alpha = \frac{a}{b}$ a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fi			
 b a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (see Fig. 7.2.5-3) 	 b a: Length (mm) of the longer side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Poisson's ratio to be taken as 0.3 b: b b: b b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3) b: Poisson's ratio to be taken as 0.3 	α : Panel aspect ratio to be taken as follows: α	α : Panel aspect ratio to be taken as follows:	
plate panel (See Fig. 7.2.5-3)plate panel (See Fig. 7.2.5-3)b:Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)b:b:Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)	plate panel (See Fig. 7.2.5-3)plate panel (See Fig. 7.2.5-3)b:Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)v:Poisson's ratio to be taken as 0.3v:Poisson's ratio to be taken as 0.3	$\alpha = \frac{1}{b}$	$\alpha = \frac{1}{b}$	
b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)b: Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)	b:Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)b:Length (mm) of the shorter side of the plate panel (See Fig. 7.2.5-3)v:Poisson's ratio to be taken as 0.3v:Poisson's ratio to be taken as 0.3			
plate panel (See Fig. 7.2.5-3) plate panel (See Fig. 7.2.5-3)	plate panel (See Fig. 7.2.5-3)plate panel (See Fig. 7.2.5-3)v: Poisson's ratio to be taken as 0.3v: Poisson's ratio to be taken as 0.3		1 1 (5)	
	ν : Poisson's ratio to be taken as 0.3 ν : Poisson's ratio to be taken as 0.3	- · · · ·		

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

7.2.6 Bending Stiffness	7.2.6 Bending Stiffness	
 7.2.6.1 Depth of Girders For the members specified in Table 7.2.6-1, depth is not to be less than that specified in the table. However, the depth may be reduced provided that the member has equivalent moment of inertia or deflection to the required members. Cantilever beams are to comply with the following (1) and (2): The depths of the cantilever beams may be gradually tapered down towards their inboard ends from the toes of the end brackets and may be reduced to about 1/2 of the depth at the toe of the end bracket. The sectional areas of face plates may be gradually tapered down from the toes of the end brackets toward the inboard end of the cantilever beams and may be reduced to 0.60 <i>times</i> that at the toe of the end bracket. 	7.2.6.1 Depth of Girders For the members specified in Table 7.2.6-1, depth is not to be less than that specified in the table. However, the depth may be reduced provided that the member has equivalent moment of inertia or deflection to the required members.	Amendment (3) For clarification of the rules, reviews the composition of the requirements related to simple girders. • Transferred from 7.2.9 due to composition review
Member	Depths of Girders (<i>m</i>)	
Web frame	$0.1\ell_{bdg}$	
Web frame supporting cantilever	$0.125\ell_{bdg}$	
Web frame supporting side stringer	$0.125\ell_{bdg}$	
Side stringer	$0.125\ell_{bdg}$	
Side stringer forward of collision bulkhead	$0.2\ell_{bdg}$	
Web frame forward of collision bulkhead	$0.2\ell_{bdg}$	• Transferred from
<u>Cantilever beam</u>	$0.2\ell_{bdg}$	7.2.9 due to composition
Note: ℓ_{bdg} : Effective bending span (<i>m</i>) of the girder as given in	3.6.1.4	review

Amended	Original	Remarks
(Deleted) (Deleted)	 7.2.8 Web Frames 7.2.8.1 Application 1 7.2.8 applies to web frames in multi-deck ships with two or more decks as defined in the following (1) and (2): (1) Web frames extending continuously from the inner bottom plating to the freeboard deck. The "web frames" meant here include the adjacent side frames above and below the web frame (in cases of ships with both longitudinal and transverse framing systems). Web frames in single-deck ships are to be in accordance with the requirements in 7.2.3 to 7.2.5. (2) Web frames specified in -1(1) and (2) above are to be in accordance with the requirements in 7.2.8.2 and 7.2.8.3, respectively. 3 Notwithstanding -2 above, web frames may be assessed based on the moments and shear forces obtained by direct strength calculations such as beam analysis. 	Amendment (3) For clarification of the rules, reviews the composition of the requirements related to simple girders. • Deleted due to composition review

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
(Deleted)	OriginalOriginalFig. 7.2.8-1Example of ApplicationAnd the state of t	

Amended	Original	Remarks
	$\underbrace{\text{ii)}}_{1} \text{For } 1 \leq i \leq n-1$	
	$\underline{M}_{i,i-1} = \frac{1}{2} (C_{i,i-1} - C_{i,i+1} + \emptyset_{i-1} - \emptyset_{i+1})$	
	(b) The moment $M_{i,i+1}$ (kN-m) acting on a web	
	frame with node <i>i</i> being its lower end (the moment at the lower end of the web frame) is to	
	be taken as follows (See Fig. 7.2.8-2):	
	i) For $1 \le i \le n-1$	
	$\frac{M_{i,i+1} = -\frac{1}{2} (C_{i,i-1} - C_{i,i+1} + \phi_{i-1})}{-\phi_{i+1}}$	
	$-\phi_{i+1}$)	
	$\underline{11} For \ i = 0$	
	$M_{0,1} = -\frac{1}{4} \left(C_{1,2} + C_{1,0} - \phi_0 + \phi_2 \right) - C_{0,1}$	
	$\underline{C}_{i,i-1}$: Coefficient to be taken as follows:	
	$\underline{C_{i,i-1}}: \begin{array}{c} \hline \text{Coefficient to be taken as follows:} \\ \underline{C_{i,i-1}} = \frac{S_i \ell_i^2}{60} (3P_i + 2P_{i-1}) (0) \end{array}$	
	$\frac{\langle i \leq n-1 \rangle}{\langle i \leq n-1 \rangle}$	
	$\begin{array}{c} \underline{C_{i,i+1}:} \text{Coefficient to be taken as follows:} \\ \underline{i} \text{For } 0 \le i \le n-2 \end{array}$	
	$\frac{11 - 10i - 0 \le t \le n - 2}{S_{i+1}\ell_{i+1}^2}$	
	$\frac{C_{i,i+1} = -\frac{S_{i+1}\ell_{i+1}^2}{60}(2P_{i+1})$	
	$\frac{\pm 3P_i}{\text{ii) For } i = n - 1}$	
	$\frac{111 - 1101 - 1}{5n \ell_n^2}$	
	$\frac{C_{n-1,n} = -\frac{S_n \ell_n^2}{120} (7P_n)}{C_{n-1,n}}$	
	$\pm 8P_{n-1}$)	
	$\frac{\emptyset_i: \text{ Coefficient to be taken as follows:}}{i) \text{For } i = 0}$	
	$\frac{\phi_0 = 0}{\phi_0 = 0}$	
	ii) For $1 \le i \le n-1$	

Amended	Original	Remarks
Amended	Original $ \frac{\phi_i = -\frac{1}{4} (C_{i,i-1} + C_{i,i+1})}{\text{iii)} \text{ For } i = n} \\ \frac{\phi_n = -\frac{1}{2} \phi_{n-1}}{\sum_{i:} \text{ Spacing } (m) \text{ of the web}} \\ \text{frame in the } i\text{-th tier from the inner bottom plating} \\ \frac{\ell_i:}{\sum_{i:} \text{ Span } (m) \text{ of the web frame in the } i\text{-th tier from the inner bottom plating}} \\ \frac{P_i:}{\sum_{i:} \text{ Load } (kN/m^2) \text{ due to the external load at node } i \text{ in the external load at node } i \text{ in the maximum load condition} \\ \text{as specified in 4.4.2.1-1} \\ (2) \text{ Nodal shear forces acting on web frames are to be in accordance with the following (a) and (b): \\ (a) The shear force F_{i,i-1} (kN) acting on a web frame with node i being its upper end (the shear force at the upper end of the web frame) is to be taken as follows:F_{i,i-1} = -\frac{1}{\ell_i} (M_{i,i-1} + M_{i-1,i}) \\ \qquad \qquad$	Remarks

Amended	Original	Remarks
(Deleted)	$F_{i,i+1} = -\frac{1}{\ell_{i+1}} (M_{i+1,i} + M_{i,i+1}) + \frac{\ell_{i+1}}{\ell_i} (S_{i+1}P_{i+1} + 2S_iP_i)$ $i) \text{For } i = 0$ $F_{0,1} = -\frac{1}{\ell_1} (M_{1,0} + M_{0,1}) + \frac{\ell_1}{\ell_6} (S_1P_1 + 2S_1P_0)$ $M_{1,0}, M_{0,1}, M_{i+1,i}, M_{i,i+1}, \ell_i, S_i \text{ and } P_i:$ $M_{1,0}, M_{0,1}, M_{i+1,i}, M_{i,i+1}, \ell_i, S_i \text{ and } P_i:$ $As \text{ specified in (1) above}$ Fig. 7.2.8-2Moment Acting on a Web Frame at Node <i>i</i> $P_{n-1} = \int_{1}^{3} \int_{1}^{n} \int_{1}^{n} \int_{1}^{3} \int_{1}^{n} \int_{1}^{1} \int_{1}^{n} \int_{1}^{1} \int_{1}^{n} \int_{1}^{1} \int_{1}^{1} \int_{1}^{n} \int_{1}^{1} \int_{1$	
(Deleted)	7.2.8.3 Web Frames Supporting Cantilever Beams The scantlings of web frames are to be in accordance	Amendment (3) For clarification of the rules, reviews the

Amended	Original	Remarks
	with the requirements in 7.2.3 to 7.2.5. The bending moments	composition of the
	and shear forces to be considered in applying 7.2.3 to 7.2.5 are	requirements related to
	to be in accordance with the following (1) or (2) as applicable	simple girders.
	depending on the number of decks:	• Transferred to 7.2.2.2
	(1) Web frames in double-deck ships (See Fig. 7.2.8-3)	due to composition
	(a) Web frame in the first tier from the inner bottom	review
	plating:	ICVIEW
	i) Moment	
	$0.6 m_1 $	
	ii) Shear force	
	$\frac{0.3 \left \frac{m_1}{\ell_1} \right }{ \ell_1 }$	
	(b) Web frame in the second tier:	
	i) Moment	
	$\max(0.25m_2 + 0.5m_1 , m_2)$	
	ii) Shear force	
	$ 0.5m_1 - 0.75m_2 $	
	ℓ_2	
	(2) Web frames in multi-deck ships with three or more	
	decks:	
	i) Moment	
	$ m_i $	
	ii) Shear force	
	$3 m_i $	
	$\frac{1}{2\ell_i}$	
	<u><i>m_i</i>: Moment due to the deck load acting on</u>	
	the web frames at the <i>i</i> -th tier deck	
	to be taken as follows:	
	$\underline{m_i = M_{di} + M_{hi}}$	
	<u>M_{di}: Moment (kN-m) due to the</u>	
	cargo loaded on the <i>i</i> -th tier deck or	
	wave loads to be obtained from	

Amended Original Remarks Assessment Model A shown in Table 7.2.9-1. However, ℓ is to be used for calculation instead of ℓ_{bdg} . M_{hi} : Moment (*kN-m*) due to the cargo loaded on the *i*-th tier hatch cover or wave loads to be obtained from Assessment Model B shown in Table 7.2.9-1. However, ℓ is to be used for calculation instead of lbdg. ℓ_i : Horizontal distance (m) from the inboard end of the supported deck transverse to the inner surface of the web frame (Deleted) Fig. 7.2.8-3 Web Frames in a Double-Deck Ship Cargo load acting on the deck transverse Cargo load acting b) b_2 on the hatch cover m_2 S_2, ℓ_2 **b** b_1 m_1 S_1, ℓ_1

Cantilever beams are to comply with the requirements in the following (1) to (5): (1) The depth of the cantilever beams measured at the toe of the end brackets is to be not less than 1/5 of the horizontal distance from the inboard end of the · Transferred to 7.2.0rules, reviews the composition of the requirements related to simple girders. · Transferred to 7.2.0	Amended	Original	Remarks
 (2) The depth of the cantilever beams may be gradually tapered down towards their inboard end from the toe of the end brackets where it may be reduced to about 1/2 of the depth at the toe of the end bracket. (3) The section modulus at the end of the cantilever beams is to be in accordance with the requirements in 	(Deleted)	 7.2.9 Cantilever Beam Systems 7.2.9.1 Cantilever Beams Cantilever beams are to comply with the requirements in the following (1) to (5): (1) The depth of the cantilever beams measured at the toe of the end brackets is to be not less than 1/5 of the horizontal distance from the inboard end of the cantilever beam to the toe of the end bracket. (2) The depth of the cantilever beams may be gradually tapered down towards their inboard end from the toe of the end brackets where it may be reduced to about 1/2 of the depth at the toe of the end bracket. (3) The section modulus at the end of the cantilever 	Remarks Amendment (3) For clarification of the rules, reviews the composition of the requirements related to simple girders. • Transferred to 7.2.6. and Table7.2.2-1 due to
		 loads to be obtained from Assessment Model A shown in Table 7.2.9-1. M_h: Moment (kN-m) due to the cargo loaded on the hatch cover or wave loads to be obtained from Assessment Model B shown in Table 7.2.9-1. (4) The sectional area of face plates may be gradually tapered down from the toe of the end brackets toward the inboard end of the cantilever beams where it may be reduced to 0.60 times that at the toe of the end 	

Amended Amended		Original	Remarks
	$\begin{array}{r} \text{point is t} \\ \hline 7.2.4. \text{ Th} \\ \hline 7.2.4. \text{ is} \\ \hline followin \\ \hline F = F_d - \\ \hline F_d: \text{ Shea} \\ \hline to be \\ \hline in \text{ Th} \\ \hline F_h: \text{ More } \\ \hline cover} \end{array}$	to thickness of the cantilever here to be in accordance with the reacher shear force to be considered to be not less than that obtain g formula: $\pm F_h$ ar force (kN) due to deck cargo of e obtained from Assessment Model Assessment Model B shown in Tab	beams at any quirements in d in applying ned from the or wave loads odel A shown ed on the hatch btained from
Assessment model	M	Ę	For clarification of
$\begin{array}{c} P_{A} \\ \hline \\ 1 \\ \hline \\ 2 \end{array}$	$M_{\pm} = \frac{SP_A \ell_{bdg}^2}{2}$	$F_2 = SP_A \ell_{SBF}$	rules, reviews the composition of the requirements relate simple girders. • Transferred to
$\begin{array}{c} B \\ 1 \\ \hline \\ 1 \\ \hline \\ 2 \end{array}$	$M_2 = P_B \ell_{Bdg}$	$F_2 = P_B$	Table7.2.1-2 and Table7.2.2-1 due to composition review
S:Spacing of cantilever beam (m) ℓ :Full length (m) of the cantilever beam ℓ_{bdg} :Effective bending span (m) of the cantilever ℓ_{snF} :Effective shear span (m) of the cantilever P_A :Average lateral load (kN/m^2) acting on the	r beam as given in 3.6.1.5	rgo load or green sea load in the maximum	

	Amended			i Buivey und	Construction of Origin			Remarks
load condition specified in 4.4.2.2. These loads are to be calculated at the midpoint of the span $-\ell$. P_{g} : Load (kN) due to the cargo loaded on the hatch cover to be taken as follows: P_{g} : $P_{g} = SBP_{\pi}$ B : A half of the breadth (m) of the hatch in the deck supported by deck transverses P_{π} : Load (kN/m ²) acting on the hatch cover as specified in 4.4.2.7 or 4.10.2.1								
7.3 Double Hul	l Structures			7.3 Doub	le Hull Structures			
7.3.1.2 Double I Double hull using an appropriate 7.3.1-2 according to skin structures and h the presence or ab centreline.	strength assessm e double hull mo o the presence of opper tanks, the <u>l</u>	absence of doub <u>breadth</u> of hatchwa	Table ole side ays and	Doub using an app 7.3.1-2 accor skin structure	ouble Hull Models le hull strength asse ropriate double hul rding to the presence and hopper tanks, absence of long	l model selected be or absence o the <u>size</u> of hatch	d from Table f double side ways and the	Amendment (9) Clarifies some definitions and corrects typographical errors:
	,	Table 7.3.1-2 Clas	ssificatio	on of Double H	Iull Models			Amendment (9)
Type o structur	f Side structure		Typical trai	nsverse sectional view	Boundary condition at the left and right of the double bottom	Boundary condition at the upper end of the double side		Clarifies some definitions and corrects typographical errors:
S1	Single side skin structure	No bilge hopper tanks provided		5	Supported			When selecting the D1/D2 types, clarify how to measure the breadth of the hatchway where the ship' s side structure changes from a
								double to a single in the middle of its height.

(Alli	lendine	Amended	o Part C of the	c Rules Io	of Survey and	Construction of Origina		2024 Ameno	Remarks
		Amenaed				Origina			Kemarks
	S2	Single side skin structure	Bilge hopper tanks provided			Rotational spring support			
	D1	Double side skin structure	Hatchway greater than 0.7 <i>B</i> in breadth ⁽¹⁾			Rotational spring support	Upper end: Free		
	D2	Double side skin structure	Hatchway 0.7 <i>B</i> and under in breadth ⁽¹⁾	P		Rotational spring support	Upper end: Supported		
	D3	Double side skin structure	No hatchway provided			Rotational spring support	Upper end: Fixed		
	D4	Double side skin structure	No hatchway provided C.L. BHD provided			Left and right ends: Rotational spring support C.L.: Supported or fixed	Upper end: Fixed		
	<u>lotes:</u> 1) Whei	n selecting the D1/I	D2 types, breadth of 1	hatchways is to	o be taken as the dist	tance up to the upper end	of the double side.		

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended-Original	Requirements	s Compariso	n Table

()	Amendment related t	o Part C of the	Rules for Survey	v and Construction c	of Steel Ships	(2024 Amendment 2))
· · ·						(_ • _ • _ • _ • _ • _ •))

	nended			si suivey und com	Original		
ealisation of L ressures at the e 7.3.1-1 are to	e load calcu	cording to th	ne type of	shown in Table 7.3. members.	tion of Loads es at the load calculation 1-1 are to be used accordi	1 1	
		Table 7.3	.1-1 Load	l Calculation Points			Amendment (9)
<i>LCP</i> coordinate	Bottom shell	Inner bottom plating		Side shell	Longitudinal bulkhead		Clarifies some definitions and corrects
x coordinate	$x_{DH} = 0$	$x_{DH} = 0$		$x_{DH} = 0$	$x_{DH} = 0$		typographical errors:
y coordinate	$y_{DH} = 0$	$y_{DH} = 0$		$y_{DH} = 0.5B_{DB} + D_{DS}$ ide: $y_{DH} = -0.5B_{DB} - D_{DS}$ $y = y_{SS}$	Portside: $y = 0.5B_{DB}$ Starboard side: $y = -0.5B_{DB}$ $y = y_{LB}$		The definition of the y- coordinate for the load
z coordinate	z = 0	$z = D_{DB}$		$z_{DH} = -0.5B_{DS}$	$z_{DH} = -0.5B_{DS}$		
(Notes) y_{SS} : <u>y-coordinate of the side shell corresponding to the z-coordinate at the $z_{DH} = 0$ point.</u> <u>y_{LB}</u> : <u>y-coordinate of the longitudinal bulkhead corresponding to the z-coordinate at the $z_{DH} = 0$ point. Either of the load calculation point of port or starboard side of the longitudinal bulkhead may be used for the assessment of double bottom.</u>					calculation points on the side shell and the longitudinal bulkhead will be amended to accommodate ships with bilge hoppers or steps with double-hull structuers.		

Amended	Original	Remarks
7.3.2 Requirements for Scantlings	7.3.2 Requirements for Scantlings	
	<u>_</u>	Amendment (8) Assessments for double hull Structures The safety factor is amended based on the feedback from trial calculation results, balancing it with the safety factor from the old Part C, the evaluation model which are considered to be more in line with reality in Part C of the Rules and Guidance for the Survey and Construction of Steel Ships.

Amended	Original	Remarks
formula. However, $C_{EX} = 1.0$ where no longitudinal girders are provided, while $C_{EY} = 1.0$ where no transverse girders are provided. t_{n50} $C_{Safety} (1 - v^2)$	girders are provided, while $C_{EY} = 1.0$ where no transverse girders are provided.	
C_{safety} : Safety factor to be taken as 1.1	$= \frac{C_{Safety}}{C_{cnd}} \frac{(1-\nu^2)}{D_{DH}}$ $\times \max\left(\frac{1}{\min(C_{bi-x}, C_{EX})} \cdot \frac{ M_X }{\gamma_{stf-x}(\sigma_{all} - \sigma_{BM})}, \frac{1}{\min(C_{bi-y}, C_{EY})} \cdot \frac{ M_Y }{\gamma_{stf-y}\sigma_{all}}\right) (mm C_{Safety}: Safety factor to be taken as 1.2$	
γ_{stf-x} , γ_{stf-y} , C_{bi-x} , C_{bi-y} , M_X , M_Y and σ_{BM} : As specified in (1) above	γ_{stf-x} , γ_{stf-y} , C_{bi-x} , C_{bi-y} , M_X , M_Y and σ_{BM} : As specified in (1) above	
7.3.2.2 Shear Strength In each assessment condition, the web thickness of girder members in double hull is to be not less than that obtained from the following formula: $t_{n50} = \frac{C_{Safety}}{C_{cnd}} \frac{ F }{D_{sh}\tau_{all}} (mm)$ $C_{Safety}: \text{ Safety factor to be taken as } 1.1$ $F: \text{ Shear force } (kN) \text{ of the girder in double hull under assessment as given in 7.3.3.2}$	7.3.2.2 Shear Strength In each assessment condition, the web thickness of girder members in double hull is to be not less than that obtained from the following formula: $t_{n50} = \frac{C_{Safety}}{C_{cnd}} \frac{ F }{D_{sh}\tau_{all}} (mm)$ $C_{Safety}: \text{ Safety factor to be taken as } 1.2$ $F: \text{ Shear force } (kN) \text{ of the girder in double hull under assessment as given in 7.3.3.2}$	Amendment (8) Assessments for double hull Structures The safety factor is amended based on the feedback from trial calculation results, balancing it with the safety factor from the old Part C, the evaluation model which are considered to be more in line with reality in Part C of the Rules and Guidance for the Survey and Construction of Steel Ships.

Amended	Original	Remarks
7.3.2.3 Shear Buckling Strength In each assessment condition, the web thickness of	7.3.2.3 Shear Buckling Strength In each assessment condition, the web thickness of	Amendment (8) Assessments for double hull Structures
girder members in double hull is to be not less than that obtained from the following formulae (1) to (3):	girder members in double hull is to be not less than that obtained from the following formulae (1) to (3):	
(1) For girder webs with no opening	(1) For girder webs with no opening	The safety factor is amended based on the feedback from trial
$t = \sqrt[3]{C_{safety}} \frac{ F b^2}{C_{cnd}D_w} \frac{12(1-v^2)}{K_\tau \pi^2 E} (mm)$	$t = \sqrt[3]{C_{safety} \frac{ F b^2}{C_{cnd}D_w} \frac{12(1-\nu^2)}{K_\tau \pi^2 E}} (mm)$	calculation results, balancing it with the
 <i>C_{Safety}</i>: Safety factor to be taken as 1.1 <i>F</i>: Shear force (<i>kN</i>) of the girder in double hull under assessment as given in 7.3.3.2 	 C_{Safety}: Safety factor to be taken as 1.2 F: Shear force (kN) of the girder in double hull under assessment as given in 7.3.3.2 	safety factor from the old Part C, the evaluation model which
(2) For girder webs with an opening reinforced by stiffeners in the girder span direction	(2) For girder webs with an opening reinforced by stiffeners in the girder span direction	are considered to be more in line with realit
$t = \sqrt[3]{C_{safety} \frac{ F b^2}{C_{cnd}(D_w - D_0)} \frac{12(1 - \nu^2)}{K_\tau \pi^2 E}} (mm)$	$t = \sqrt[3]{C_{safety} \frac{ F b^2}{C_{cnd}(D_w - D_0)} \frac{12(1 - \nu^2)}{K_\tau \pi^2 E}} (mm)$	in Part C of the Rules and Guidance for the Survey and Construction
<i>F</i> : Shear force (kN) of the girder in double hull under assessment as given in 7.3.3.2	F: Shear force (kN) of the girder in double hull under assessment as given in 7.3.3.2	of Steel Ships.
(3) For girder webs with an opening (an unreinforced opening)	(3) For girder webs with an opening (an unreinforced opening)	
$t = \sqrt[3]{C_{safety} \frac{ F b^2}{C_{cnd}D_w} \frac{12(1-\nu^2)}{\gamma_{a_0}K_{\tau}\pi^2E}} (mm)$	$t = \sqrt[3]{C_{safety} \frac{ F b^2}{C_{cnd}D_w} \frac{12(1-\nu^2)}{\gamma_{a_0}K_{\tau}\pi^2 E}} (mm)$	
 <i>C_{safety}</i>: Safety factor to be taken as 1.1 <i>F</i>: Shear force (<i>kN</i>) of the girder in double hull under assessment as given in 7.3.3.2 	 <i>C_{safety}</i>: Safety factor to be taken as 1.2 <i>F</i>: Shear force (<i>kN</i>) of the girder in double hull under assessment as given in 7.3.3.2 	
γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows:	γ_{a_0} : Coefficient of the effect of an opening, such as a manhole, on shear buckling to be taken as follows:	

(Amendment related to Part C of the Rules for	or Survey and Construction of Steel Ships (2024 Amend	ament 2))
Amended	Original	Remarks
$\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$	$\gamma_{a_0} = \left(1 + \frac{D_0}{2a} \times 10^3\right)^{-2}$	
Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	
10.4 Deck Structure	10.4 Deck Structure	
10.4.1 Camber of Weather Deck*	10.4.1 Camber of Weather Deck*	A
10.4.1.1 <u>In general, appropriate camber is to be provided in the</u> weather deck.	10.4.1.1 Appropriate camber is to be provided in the weather deck.	Amendment (9) Although the installation of camber on weather decks is generally recommended, "In general" is added because camber may not be installed in some cases.

(Amendment related to Part C of the Rules for Sur	ey and Construction of Steel Shi	ps (2024 Amendment 2))
---	----------------------------------	------------------------

Amended	Original	Remarks
		Kelliarks
10.6 Strengthened Bottom Forward	10.6 Strengthened Bottom Forward	
10.6.2 General Ships (Ship other than those with L_c	10.6.2 General Ships (Ship other than those with L_c	
of not more than 150 m, $V/\sqrt{L_c}$ of not less	of not more than 150 m, $V/\sqrt{L_c}$ of not less	
than 1.4 and C_B of not more than 0.7)	than 1.4 and C_B of not more than 0.7)	
than it and og of not more than only		Amendment (9)
10.6.2.2 Structural Arrangement	10.6.2.2 Structural Arrangement	Clarifies some
The structural arrangement is to be in accordance with the	The structural arrangement is to be in accordance with the	definitions and corrects
following (1) and (2).	following (1) and (2).	typographical errors
(1) (Omitted)	(1) (Omitted)	typographical citors
(2) Where the structural arrangement of the strengthened	(2) Where the structural arrangement of the strengthened	Clarifies the application
bottom forward is different from the structural	bottom forward is different from the structural	of bottom slamming
arrangement specified in (1) above, the following (a)	arrangement specified in (1) above, the following (a)	÷
to (c) are to be applied:	to (c) are to be applied:	impact pressure
(a) (Omitted)	(a) (Omitted)	
(b) (Omitted)	(b) (Omitted)	T 1
(c) (Deleted)	(c) <u>The calculation of the section modulus of bottom</u>	The requirements
(c) (Deleted)	longitudinals and longitudinal shell stiffeners is	remain unchanged.
	to be as specified in 10.6.2.3-1. The slamming	
	impact pressure P are to be P_{SLAC} specified in	
	4.8.2.2-2.	
		In 10.6.2.3-2 and
10.6.2.3 Shell Longitudinals	10.6.2.3 Shell Longitudinals	10.6.2.4, 10.6.2.3-1 is
1 In ships having a bow draught in the ballast condition	1 In ships having a bow draught in the ballast condition	referred to as the loads
of not more than $0.025L_{C230}$, the section modulus of the side	of not more than $0.025L_{C230}$, the section modulus of the side	to be used in strength
longitudinal and bottom longitudinal in way of the	longitudinal and bottom longitudinal in way of the	assessment, so the
strengthened bottom forward is to be not less than that given	strengthened bottom forward is to be not less than that given	application of the loads
by the following formula.	by the following formula.	is collectively specified
$Z = 0.44 KP \lambda \ell^2 (cm^3)$	$Z = 0.44 KP \lambda \ell^2 \ (cm^3)$	in 10.6.2.3-1.
K: Material factor	K: Material factor	In 4.8.2.2, loads from
ℓ : Spacing (<i>m</i>) of floors	ℓ : Spacing (<i>m</i>) of floors	P_{SL1} to P_{SL4} are

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
 λ: 0.774ℓ. However, where the spacing of the longitudinals is not more than 0.774ℓ, the spacing (m) of that is to be used. P: Slamming impact pressure (kN/m²) as specified in 4.8.2.2. 2 (Omitted) 	 λ: 0.774<i>l</i>. However, where the spacing of the longitudinals is not more than 0.774<i>l</i>, the spacing (m) of that is to be used. P: Slamming impact pressure (kN/m²) as per the following: Ships other than noted below: Bottom slamming pressure P_{SL1} (kN/m²), as specified in 4.8.2.2. Ships having L_C of not less than 150 m and C_B of not less than 0.7: Bottom slamming pressure P_{SL3} (kN/m²), as specified in 4.8.2.2. 2 (Omitted) 	specified.
10.9 Tank Structures for Sloshing	10.9 Tank Structures for Sloshing	
10.9.2 Plates	10.9.2 Plates	
10.9.2.1 The thickness of plates on which sloshing loads act is to be not less than the value obtained from the following formula. $t = \frac{b}{2} \sqrt{\frac{P_{slh} \times 10^{-3}}{1.15C_a \sigma_Y}} (mm)$ $\sigma_Y: \text{ Specified minimum yield stress } (N/mm^2)$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel.}$ However, it is to be taken as breadth of flange b_f (mm) or breadth of web $b_w(mm)$ in the case of corrugated bulkheads (<i>See</i> Fig. 10.9.2-1)	10.9.2.1 The thickness of plates on which sloshing loads act is to be not less than the value obtained from the following formula. $t = \frac{b}{2} \sqrt{\frac{P_{slh} \times 10^{-3}}{1.15C_a \sigma_Y}} (mm)$ $\sigma_Y: \text{ Specified minimum yield stress } (N/mm^2)$ $b: \text{ Length } (mm) \text{ of the shorter side of the plate panel.}$ However, it is to be taken as breadth of flange b_f (mm) or breadth of web $b_w(mm)$ in the case of corrugated bulkheads (See Fig. 10.9.2-1)	Amendment (5) Revises the scope of application for correction coefficient for the aspect ratio in the local strength calculation formula of plate members.
P_{slh} : Equivalent pressure (kN/m^2) for the plate panels,	<u>a: Length (<i>mm</i>) of the longer side of the plate panel.</u>	a and α since they are

(Amendment related	to Part C of	the Rules for Surv	ey and Construction	of Steel Ships	(2024 Amendment 2))

Amended	Original	Remarks
as specified in Table 10.9.2-1	α : Aspect ratio, to be taken as a/b .	no longer used in this
C_a : Coefficient of axial force effect as specified in	P_{slh} : Equivalent pressure (kN/m^2) for the plate panels,	formula.
Table 6.3.2-2. However, it is taken as 1.0 for	as specified in Table 10.9.2-1	
corrugated bulkheads.	C_a : Coefficient of axial force effect as specified in	Correct the references
σ_{BM} : Stress (<i>N/mm²</i>) due to hull girder bending, as	Table 6.3.2-2 when $\alpha \ge 2$ or Table 6.3.2-3	because the tables are
specified in 10.9.1.4	when $\alpha < 2$. However, it is taken as 1.0 for	merged.
	corrugated bulkheads.	
	σ_{BM} : Stress (<i>N/mm²</i>) due to hull girder bending, as	
	specified in 10.9.1.4	

Amended	Original	Remarks
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part C HULL CONSTRUCTION AND	Part C HULL CONSTRUCTION AND	
EQUIPMENT	EQUIPMENT	
EQUIFWIENT	EQUITMENT	
Dowt 1 CENEDAL HULL DECHIDEMENTS	Dowt 1 CENEDAL HULL DECHIDEMENTS	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
C7 STRENGTH OF PRIMARY SUPPORTING	C7 STRENGTH OF PRIMARY SUPPORTING	
STRUCTURES	STRUCTURES	
C7.2 Simple Girders	C7.2 Simple Girders	
C7.2.2 Strength Assessment	(Newly Added)	
<u>C7.2.2.1 General</u>		Amendment (3) For clarification of the
In applying 7.2.2.1-1, Part 1, Part C of the Rules to web		rules, reviews the
frames, moments and shear forces are to be in accordance with		composition of the
Table C7.2.2-1.		requirements related to
		simple girders.
		• Newly adds the list of
		applications of web
		frames

		the Rules for Survey and Construct	1 \	//	
Amended Original				Remarks	
Table C7.2.2-1	Moments and She	Moments and Shear Forces to be Considered in the Assessment of Web Frames			
	Single-deck ships	Double-deck ships	Multi-deck ships with three or more decks	applications of web frames	
Web frames subject to <u>external pressure</u>	<u>7.2.2.1, Part 1,</u> <u>Part C of the Rules</u>	7.2.2.1, Part 1, Part C of the Rules	7.2.2.1, Part 1, Part C of the <u>Rules or 7.2.2.1, Part 2-6, Part</u> <u>C of the Rules</u>		
<u>Web frames supporting</u> <u>cantilever beams</u>	<u>7.2.2.2(1), Part 1,</u> <u>Part C of the Rules</u>	Double-deck ships with the first layers being double side and the second layers being single side 7.2.2.2(1), Part 1, Part C of the Rules Double-deck ships with the first and second layers being single side: 7.2.2.2(2), Part 1, Part C of the Rules	7.2.2.2(1), Part 1, Part C of		

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))
--

	i Survey and Construction of Steel Ships (2024 Ameri	//
Amended	Original	Remarks
Appendix C1 REFERENCE DATA FOR DESIGN	Appendix C1 REFERENCE DATA FOR DESIGN	
<u>1.4 Simplified Method for Deriving Stress due to Hull</u> <u>Girder Loads</u>	(Newly added)	
 <u>1.4.1 General</u> <u>1</u> This 1.4 is specified for the purpose of deriving the stresses due to the hull girder loads required for the local strength assessment specified in Chapter 6 and the primary supporting structure strength assessment specified in Chapter 7 using a simplified method in the initial study of shipbuilding design and to determine the initial scantlings. <u>2</u> The stress due to the hull girder load derived in this 1.4 corresponds to the maximum load condition. <u>3</u> The stress due to the hull girder load derived in accordance with 6.2.3.1, 7.2.3.1 and 7.3.2.1 is to be used for deciding the final scantlings. 1.4.2 Stress due to Hull Girder Loads 		Amendment (6) Simplified method for deriving stress due to hull girder loads For the purpose of reducing the number of work hours, specifies a simplified method for deriving stress due to hull girder loads as a reference in the early consideration of ship design.
A simplified method for deriving the stress due to the hull		
girder load is given in Table 1.		

scenario Co	Table	1 Simplified Method for Deriving S Stress due to hull girder loads	Stress due to Hull Girder Lo	<u>ads</u> <u>Wave and still water vertical</u> bending moments to be	Amendment (6) Simplified method fo
scenario Co	<u>Condition</u>	Stress due to hull girder loads	β		*
	σ		-	$\frac{\text{considered}}{M_W} \text{ and } \frac{M_S}{M_S}$	deriving stress due to hull girder loads
<u>Maximum</u>	HF ⁽¹⁾ whe	$\frac{=\sigma_{BM-HF}}{re} = \begin{cases} \frac{190}{K} f_D \frac{z - z_n}{z_D - z_n} \text{ for } z \ge z_n \\ \left \frac{190}{K} f_B \frac{z - z_n}{z_B - z_n} \right \text{ for } z < z_n \end{cases}$	_	_	
	<u>RP(1)</u> whe	$= \max(\beta \sigma_{BM-HF} + 0.35C_{MH}y , C_{MH}y)$ $\frac{\text{re}}{B_{MH}} = \min\left(\frac{118}{B_{\chi 2}}, 5.9\right)$	$\frac{0.35M_W + M_S}{M_W + M_S}$	Wave and still water vertical bending moments for hogging and sagging load cases	
$\frac{\text{designer}}{z_n: \text{Vertical}}$ $\frac{(\text{Remarks})}{(1) \text{Load constraints}}$	er; for example, Il distance from ondition used fo	tive to the allowable yield strength of vertical la a margin of 10 % is expressed as 0.9. the top of the keel to the horizontal neutral axis, or the local strength assessment specified in Cha	as assumed by the designer		

(Amendment related to Part C of the Rules for Surv	ey and Construction of Steel Ships (2024 Amendment 2))
--	--

Ì		nended		,	Origin	al	Remarks
Part 2	Part 2-1 CONTAINER CARRIERS			Par	t 2-1 CONTA	INER CARRIERS	
	Chapter 4 ds to be Consi porting Structu	dered in St	DS rength of Primary		Chapter 4 oads to be Consider upporting Structures	LOADS ed in Strength of Primary	7
4.4.2 N	/laximum Load	Condition		4.4.2	Maximum Load Co	ndition	
For hydrostatic pressure at	pressure at the	s of double draught and design wave	hull structures, the the hydrodynamic specified in Table 2-2 External and Inte	Fo hydrostat pressure 4.4.2-2 ar	ic pressure at the dra at the equivalent dest the to be considered.	f double hull structures, the ught and the hydrodynamic ign wave specified in Table	Amendment (9)
	Structures to be assessed		$P_{DB}(kN/m^2)^{(1)(2)}$		$P_{DS}(kN/m^2)$	(1) (2)	Clarifies some definitions and corrects
	Double bottom	S1(<u>3)</u>	$P_{exs} + P_{exw} - P_{in_s1}$		$P_{exs} + P_{ess}$	cw	typographical errors
	Double side	<i>S</i> 2	$P_{exs} + P_{exw} - P_{in_s1}$		$P_{exs} + P_{exs}$	cw	Clarifies the cases where
		<i>S</i> 3	$P_{exs} + P_{exw} - P_{in_s3}$		$P_{exs} + P_{ez}$	cw	container cargo loads can be taken into
	P_{in_s1} , P_{in_s3} : formula: is to be however, when ther	on side shell in t <u>In genera</u> taken as 0: howe e are no partial b	he case of P_{DS} . Each value is al. $\pm t$ he values considering the values are to be take ulkheads and there are two or	(kN/m^2) acting to be calculate e effect of cont en as 0 when the more bays bet	on bottom shell in the case of ed in accordance with 4.6.2.4, ainer cargo (kN/m^2) , as given - the number of bays in the cargo ween watertight bulkheads in within the range from the water	Part 1. by the following - hold is only one. the cargo hold under	account.

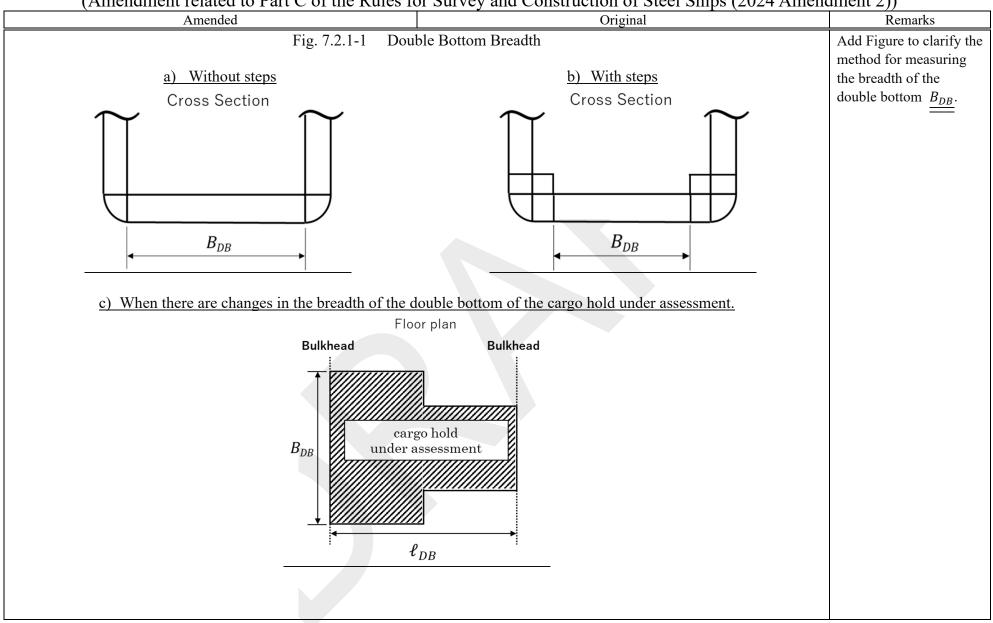
Amended-Original	Requirements	Comparison Table
i internation of Shinar		

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

$P_{in_s1} = 0.15\rho gT$ $P_{in_s3} = 0.3\rho gT_{st}$ (1) Load calcula (2) When calcula	tion points are to be in accordance with 7.3.1.5, Part ating loads, $T_{LC} = T_{SC}$.		
		ch is the X coordinate (m) at the centre of gravity of the ship.	Amendment (8) Assessments for double hull Structures
			Specifies equivalent design wave HM-2 value of P_{exw} at the ship's centre of gravity position x_G as the minimum value to calculate the equivalent design wave HM value of P_{exw} as a safer side evaluation load in the condition where external pressure becomes dominant.

Amended	Original	Remarks
		Kelliarks
Chapter 5 LONGITUDINAL STRENGTH	Chapter 5 LONGITUDINAL STRENGTH	
5.1 General	5.1 General	
5.1 General	5.1 General	
5.1.4 Hull Girder Stress	5.1.4 Hull Girder Stress	
		Amendment (4)
5.1.4.1 Vertical Bending Moment	5.1.4.1 Vertical Bending Moment	Adds harbour condition
1 Vertical bending moment σ_{HG} (N/mm ²) is to be	1 Vertical bending moment σ_{HG} (N/mm ²) is to be	to longitudinal strength
obtained from the following formula:	obtained from the following formula:	assessment of container
$\gamma_S M_S + \gamma_W M_W \qquad (5.5) \times 10^5$	$\gamma_S M_S + \gamma_W M_W (z = z) \times 10^5$	carriers.
$\sigma_{HG} = \frac{\gamma_S M_S + \gamma_W M_W}{I_V} (z - z_n) \times 10^5$	$\sigma_{HG} = \frac{\gamma_S M_S + \gamma_W M_W}{I_V} (z - z_n) \times 10^5$	
γ_S , γ_W : Partial safety factors, to be taken as 1.0	γ_S , γ_W : Partial safety factors, to be taken as 1.0	Modifies the definitions
M_S , M_W : Vertical still water bending moment and	M_S , M_W : Vertical still water bending moment and	of vertical bending
vertical wave bending moment (<i>kN-m</i>) under	vertical wave bending moment (kN-m) for	moment and shear force
consideration, as specified in Table 5.1.4-1	the load cases "hogging" and "sagging" as	as in Part 1.
	specified in 4.2.2.5	
I_{ν} : Moment of inertia (cm^4) for the cross section	I_{ν} : Moment of inertia (cm^4) for the cross section	
under consideration	under consideration	
z: Vertical coordinate of the location under	z: Vertical coordinate of the location under	
consideration (<i>m</i>)	consideration (<i>m</i>)	
z_n : Distance from the baseline to the horizontal	z_n : Distance from the baseline to the horizontal	
neutral axis (m)	neutral axis (m)	
2 Vertical shear stress τ_{HG} (N/mm ²) is to be obtained	2 Vertical shear stress τ_{HG} (N/mm ²) is to be obtained	
from the following formula:	from the following formula:	
$\tau_{HG} = \frac{(\gamma_S Q_S + \gamma_W Q_W) q_v}{t} \times 10^3$	$\tau_{HG} = \frac{(\gamma_S Q_S + \gamma_W Q_W) q_v}{t} \times 10^3$	
l	$\tau_{HG} = \frac{1}{t} \times 10^{3}$	
γ_S , γ_W : As specified in 1 above.	γ_S , γ_W : As specified in 1 above.	
Q_S , Q_W : Vertical still water shear force and vertical	Q_S , Q_W : Vertical still water shear force and vertical	
wave shear force (kN-m) under	wave shear force (kN) for the load cases	
consideration, as specified in Table 5.1.4-2	"hogging" and "sagging" as specified in	

Amended	Original	Remarks
qv: Shear flow (N/mm) at any location shear force acts along the cross section consideration, to be determined accord the calculation method which are spendent of the section of the sec	n when on under rding to cified in q_v : $\frac{4.2.2.5}{\text{Shear flow }(N/mm)}$ at any location when shear force acts along the cross section under consideration, to be determined according to the calculation method which are specified in Annex	
	Vave Vertical Bending Moments to be Considered	Amendment (4) Newly added as in Part
Condition Maximum load condition	Ms Mw Still water and wave vertical bending moment for the hogging and sagging load cases shown in 4.2.2.5	1
Harbour condition	$\frac{M_{PT.max} \text{ or } M_{PT.min}}{0}$	
	d Wave Vertical Shear Forces to be Considered	Amendment (4) Newly added as in Part
<u>Condition</u> <u>Maximum load condition</u> <u>Harbour condition</u>	Qs. Qw Still water and wave vertical shear force for the hogging and sagging load cases shown in 4.2.2.5 QPT max or QPT min Q	1
5.2 Yield Strength Assessment	5.2 Yield Strength Assessment	
 5.2.1 Bending Strength and Shear Strength 5.2.1.1 Evaluation Area 1 For each of the load cases "hogging" and "sa 	 5.2.1 Bending Strength and Shear Strength 5.2.1.1 Evaluation Area 1 For each of the load cases "hogging" and "sagging" as 	Amendment (4) Modifies the reference.


(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

the equivalent hull girder stress σ_{eq} (N/mm ²) is to be in	defined in 1225 the equivalent hull girder stress σ	
	<u>defined in 4.2.2.5</u> , the equivalent hull girder stress σ_{eq}	
accordance with the following formula:	(N/mm^2) is to be in accordance with the following formula:	
$\sigma_{eq} < \sigma_{perm}$	$\sigma_{eq} < \sigma_{perm}$	
$\sigma_{eq} = \sqrt{\sigma_x^2 + 3\tau^2}$	$\sigma_{eq} = \sqrt{\sigma_x^2 + 3\tau^2}$	
Where σ_x and τ are combination of hull girder	Where σ_x and τ are combination of hull girder	
stresses, to be taken as the following formulae	stresses, to be taken as the following formulae	
according to the bending strength assessment and shear	according to the bending strength assessment and shear	
strength assessment, and where σ_{HG} and τ_{HG} are to	strength assessment, and where σ_{HG} and τ_{HG} are to	
be in accordance with 5.1.4.1.	be in accordance with 5.1.4.1.	
$\sigma_x = \sigma_{HG}$ and $\tau = 0$, for bending strength assessment	$\sigma_x = \sigma_{HG}$, $\tau = 0$, for bending strength assessment	
$\sigma_x = 0$ and $\tau = \tau_{HG}$, for shear strength	$\sigma_x = 0, \ \tau = \tau_{HG}$, for shear strength assessment	
assessment	σ_{perm} : Permissible stress (<i>N/mm</i> ²), to be taken as	
σ_{perm} : Permissible stress (<i>N/mm²</i>), to be taken as	$\sigma_{perm} = \frac{\sigma_Y}{\gamma_1 \gamma_2}$	
$\sigma_{perm} = \frac{\sigma_Y}{\gamma_1 \gamma_2}$		
1112	σ_Y : Specified minimum yield stress of the	
σ_Y : Specified minimum yield stress of the material (<i>N/mm²</i>)	material (N/mm^2) γ_1 : Partial safety factor for material, to be taken	
γ_1 : Partial safety factor for material, to be taken	γ_1 . Fattal safety factor for material, to be taken as	
as	-	
-	$\gamma_1 = K \frac{o_Y}{235}$	
$\gamma_1 = K \frac{o_Y}{235}$		
γ_2 : Partial safety factor for load combinations	γ_2 : Partial safety factor for load combinations	
and permissible stress, to be taken as	and permissible stress, to be taken as	
follows: 1.24 for bouling strength correspondent	follows: $y_{1} = 1.24$ for bonding strength assessment	Adds the permissible
$\gamma_2 = 1.24$, for bending strength assessment in the maximum load condition	$\gamma_2 = 1.24$, for bending strength assessment $\gamma_2 = 1.13$, for shear strength assessment	stresses for yield
$\gamma_2 = 1.46$, for bending strength assessment	$\gamma_2 = 1.15$, for shear such gui assessment	strength in harbour
in the harbour condition		condition as in Part 1
$\gamma_2 = 1.13$, for shear strength assessment in		
the maximum load condition		
$\gamma_2 = 1.22$, for shear strength assessment in		

Amended	Original	Remarks
2 (Omitted)	2 (Omitted)	
Chapter 7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES	Chapter 7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES	
7.2 Double Hull Structure	7.2 Double Hull Structure	
7.2.1 General 7.2.1.1 <u>Application</u> In applying 7.3, Part 1, when there are partial bulkheads in the middle of the hold, the range in the cargo hold under assessment is to be from the partial bulkhead to the watertight bulkhead.	7.2.1 General 7.2.1.1 Handling of Partial Bulkheads in the Hold In applying 7.3, Part 1, the length between the watertight bulkheads is to be assessed as the length of the cargo hold regardless of whether there are partial bulkheads in the middle of the hold. When assessing in consideration of the influence of the partial bulkheads in the middle of the hold, the strength is to be assessed by the cargo hold analysis specified in Chapter 8. Girders near partial bulkheads are to ensure sufficient strength to account for shear force effects.	Amendment (8) Assessments for double hull Structures Amended the evaluation range to extend from the partial bulkheads to the watertight bulkheads, as with the old Part C to evaluate the shear force effects in girders near partial bulkheads.
7.2.1.2 Idealisation of Structures $-1.$ ℓ_{DB} is to be taken as the length of the double bottomin the cargo hold under assessment. $-2.$ B_{DB} is to be taken as the breadth of the double bottomin the cargo hold under assessment as either the following (1)or (2); however, if the breadth of the double bottom changes, B_{DB} is to be taken as the maximum breadth of double bottom	(Newly added)	Amendment (8) Assessments for double hull Structures Specified the definition for the length and breadth of the double

(Amendment related to Part C of the Rules for Surv	ey and Construction of Steel Ships (2024 Amendment 2))
--	--

Amended	Original	Remarks
in the cargo hold under assessment. (See Fig. 7.2.1-1)		bottom. Previously, B_{DB}
(1) Where the cargo hold is not provided with steps, B_{DB}		(the breadth of the
is to be taken as the distance between the connections		double bottom) was
of the inner bottom plating and longitudinal		measured at the center
bulkheads.		of the cargo hold under
(2) Where the cargo hold is provided with steps, B_{DB} is		evaluation: however,
to be taken as the distance between the steps.		considering cases where
		B_{DB} varies within the
		$\overline{\overline{\text{carg}}}$ o hold under
		evaluation, the method
		for measuring B_{DB} has
		been amended.

Amended	Original	Remarks
		ixemarks
1	1	
CARGO HOLD ANALYSIS	CARGO HOLD ANALYSIS	
8.5 Boundary Conditions and Loads Conditions	8.5 Boundary Conditions and Loads Conditions	
8.5.2 Load Conditions	8.5.2 Load Conditions	
		Amendment (9)
8.5.2.2 Method of Applying Moments to the Structural Model	8.5.2.2 Method of Applying Moments to the Structural Model	Clarifies some
1 In applying 8.5.2.2-5, Part 1, the vertical bending	1 In applying 8.5.2.2-5, Part 1, the vertical bending	definitions and corrects
moment and horizontal bending moment act on the target hold	moment and horizontal bending moment act on the target hold	typographical errors:
are to be adjusted, based on the boundary conditions specified	are to be adjusted, based on the boundary conditions specified	Corrects the
in 8.5.1 and the value of the moment for each analysis case, in	in 8.5.1 and the value of the moment for each analysis case, in	typographical errors in
accordance with the following (1) to (3).	accordance with the following (1) to (3).	adjustment moment
(1) (Omitted)	(1) (Omitted)	aujustment moment
(2) The adjustment vertical bending moment M_{V-end} ,	(2) The adjustment vertical bending moment M_{V-end} ,	
and adjustment horizontal bending moment M_{H-end}	and adjustment horizontal bending moment M_{H-end}	
(<i>kN-m</i>) are given by the following formulae.	(kN-m) are given by the following formulae.	
$M_{V-end} = M_{V-targ} - M_{V-min} \text{ for } M_{V-targ} \ge 0$	$M_{V-end} = M_{V-targ} - M_{V-min}$ for $M_{V-targ} \ge 0$	
$M_{V-end} = M_{V-targ} - M_{V-max} \text{ for } M_{V-targ} < 0$	$M_{V-end} = M_{V-targ} - M_{V-max}$ for $M_{V-targ} < 0$	
$\underline{M}_{H-end} = M_{H-targ} - M_{H-min}$ for $M_{H-targ} \ge 1$	$M_{V-end} = M_{H-targ} - M_{H-min}$ for $M_{H-targ} \ge M_{H-targ}$	
$M_{H-end} = M_{H-targ} - M_{H-max}$ for $M_{H-targ} < 0$	$M_{V-end} = M_{H-targ} - M_{H-max}$ for $M_{H-targ} < 0$	
M_{V-targ} , M_{H-targ} : The maximum or minimum value	M_{V-targ} , M_{H-targ} : The maximum or minimum value in	
in the target hold for the vertical	the target hold for the vertical	
bending moment and horizontal	bending moment and horizontal	
bending moment (kN-m) specified	bending moment (kN-m) specified	
in Table 8.5.2-1	in Table 8.5.2-1	
(3) (Omitted)	(3) (Omitted)	

(Amendment related to	o Part C of the	Rules for Survey a	and Construction of	f Steel Ships	s (2024 Amendment 2))
			2		1	

	Amended			•	Original		Remarks
Part 2-2	BOX	K-SHA	PED BULK CARRIERS	Part 2-	2 BOX-SHAPED BULK	CARRIERS	
	Char	oter 4	LOADS		Chapter 4 LOADS		
	ds to be (porting St		ered in Strength of Primary s		Loads to be Considered in Strengt Supporting Structures	h of Primary	
4.4.2 N	Aaximum	Load C	Condition	4.4.2	Maximum Load Condition		
For t pressure at t	4.4.2.2 External Pressure For the requirements of double hull, the hydrostatic pressure at the draught and the hydrodynamic pressure at the draught and th					pressure at the	
		Tab	le 4.4.2-2 External Pressure and	d Internal	Pressure to be Considered	-	Amendment (8)
	Structures to be assessed		$P_{DB} (kN/m^2)^{(1)(2)}$		$P_{DS} (kN/m^2)^{(1)(2)}$		Assessments for double hull Structures
		S1 <u>(3)</u>	$P_{exs} + P_{exw}$		$P_{exs} + P_{exw}$		See the remark of amended-original
		<i>S2</i>	$P_{exs} + P_{exw} - (P_{bs} + P_{bd})$		$P_{exs} + P_{exw} - (P_{bs} + P_{bd})$		requirements
	Double	<i>S3</i>	$P_{exs} + P_{exw} - (P_{bs} + P_{bd})$		$P_{exs} + P_{exw} - (P_{bs} + P_{bd})$		comparison table in Table 4.4.2-2, Chapter
	bottom	S4(3)	$P_{exs} + P_{exw}$		$P_{exs} + P_{exw}$		4, Part2-1.
		S5 <u>(3)</u>	$P_{exs} + P_{exw}$		$P_{exs} + P_{exw}$		
		<i>S6</i>	$P_{exs} + P_{exw} - (P_{ls1} + P_{ld1}) - (P_{ls2} + P_{ld1})$	P_{ld2})	$P_{exs} + P_{exw} - (P_{ls1} + P_{ld1}) - (P_{ls2} + P_{ld2})$		

monant		ended	Construction of Steel Ships (2 Original	Remarks
	<i>S</i> 7	$P_{exs} + P_{exw} - (P_{bs} + P_{bd})$	$P_{exs} + P_{exw}$	
Double side	<i>S</i> 8	$P_{exs} + P_{exw}$	$P_{exs} + P_{exw}$	
P _{bs} , P _{bd} : P _{ls1} , P _{ld1} : P _{ls2} , P _{ld2} :	in case - Static value: Static of P _D the fo Differ bottor value	Those values act on side shell in case of P_{DS} .	6.2.4 , Part 1 . et on inner bottom plating in case of P_{DB} . Those ted in accordance with 4.6.2.6 , Part 1 . last hold (kN/m^2) act on inner bottom plating in case f P_{DS} . Each value is calculated in accordance with a due to liquid cargo loaded in ballast tanks in double t on longitudinal bulkheads in case of P_{DS} . Each e. nic pressure P_{ld} act on bottom shell in case of P_{DB} . nic pressure P_{ld} act on inner bottom plating in case of p_{DS} .	
S1, S2, S S3 : A distribut S4 : A distribut S5 : A S6 : A	57, 58 : As given 1 tion accord As given 1 tion accord As given b As given b	As given by the formulae in full load condition in Table 4.3.2-1. ding to the loading condition to be considered can be us by the formulae in full load condition in Table 4.3.2-1 ding to the loading condition to be considered can be us by the formulae in full load condition in Table 4.3.2-1. ding to the loading condition to be considered can be us by the formulae in ballast condition in Table 4.3.2-1. by the formulae in heavy ballast condition in Table 4.3.2-1. points is in accordance with 7.3.1.5, Part 1 for all loa	 le 4.3.2-1. However, the value calculated based on the weight sed However, the value calculated based on the weight sed 2-1. 	

Amended	Original	Remarks
	the value of y_{DH} in calculation points is taken as the location of pressure due to ballast water in the said tank is to be calculated. , which is the X coordinate (m) at the centre of gravity of the ship.	
Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	
8.4 Boundary Conditions and Loads Conditions	8.4 Boundary Conditions and Loads Conditions	
8.4.2 Load Conditions	8.4.2 Load Conditions	
8.4.2.2 Method of Applying Moments to the Structural Model In applying 8.5.2, Part 1, the vertical bending moment and horizontal bending moment act on the target hold are to be adjusted in accordance with the following (1) to (3) based upon the boundary conditions specified in 8.4.1 and the value of the moment for each analysis case. (1) (Omitted) (2) The adjustment vertical bending moment M_{V-end} , and adjustment horizontal bending moment M_{H-end} (kN - m) are obtained by the following formulae. $M_{V-end} = M_{V-targ} - M_{V-max}$, for $M_{V-targ} \ge 0$ $M_{V-end} = M_{H-targ} - M_{V-min}$, for $M_{V-targ} < 0$ $M_{H-end} = M_{H-targ} - M_{H-max}$, for $M_{H-targ} \le 0$ M_{V-targ} , $M_{H-targ} = M_{H-min}$, for $M_{H-targ} < 0$ M_{V-targ} , M_{H-targ} : The maximum or minimum value in the target hold of the vertical bending moment and horizontal bending moment (kN - m)	 8.4.2.2 Method of Applying Moments to the Structural Model In applying 8.5.2, Part 1, the vertical bending moment and horizontal bending moment act on the target hold are to be adjusted in accordance with the following (1) to (3) based upon the boundary conditions specified in 8.4.1 and the value of the moment for each analysis case. (1) (Omitted) (2) The adjustment vertical bending moment M_V-end, and adjustment horizontal bending moment M_H-end (kN-m) are obtained by the following formulae. M_V-end = M_V-targ - M_V-max, for M_V-targ ≥ 0 M_V-end = M_H-targ - M_H-max, for M_H-targ < 0 M_V-end = M_H-targ - M_H-max, for M_H-targ < 0 M_V-end = M_H-targ - M_H-min, for M_H-targ < 0 M_V-targ, M_H-targ : The maximum or minimum value in the target hold of the vertical bending moment (kN-m) 	Amendment (9) Clarifies some definitions and corrects typographical errors: Corrects the typographical errors in adjustment moment

Original Remarks Amended (Omitted) (Omitted) (3) (3) Part 2-5 **GENERAL CARGO SHIPS AND** Part 2-5 **GENERAL CARGO SHIPS AND REFRIGERATED CARGO SHIPS REFRIGERATED CARGO SHIPS Chapter 4** LOADS Chapter 4 LOADS 4.2 Loads to be Considered in Local Strength 4.2 Loads to be Considered in Local Strength **Maximum Load Condition** 4.2.2 **Maximum Load Condition** 4.2.2 Amendment (9) 4.2.2.1 Lateral Loads 4.2.2.1 Lateral Loads Clarifies some Cargo mass and cargo density are to comply with 1 definitions and corrects Table 4.2.2-1 instead of 4.4.2.5 Part 1; however, for ships in typographical errors: which the loading condition of high-density bulk cargo is Excludes the loading included as a standard loading condition in the loading conditions which are manual, 4.4.2.5 Part 1 is to be applied, and cargo mass and generally not included in cargo density are to be appropriately considered . general cargoes: In applying 4.4.2, Part 1, the parameters (GM, z_G , 1 **1**2 In applying **4.4.2**, **Part 1**, the parameters (GM, z_G , etc.) required to calculate dynamic pressure due to cargo are however, cargo, it is etc.) required to calculate dynamic pressure due to cargo are specified that 4.4.2.5 to be the values for the appropriate loading condition among to be the values for the appropriate loading condition among Part 1 is to be applied all full load conditions in consideration of cargo mass and all full load conditions in consideration of cargo mass and for vessels that plan to cargo density. However, the values in Table 4.2.2-1 may be cargo density. However, the values in Table 4.2.2-1 may be carry heavy. used if the parameters are not available. used if the parameters are not available. In applying 4.4.2, Part 1, the parameters (GM, z_G , 2 **23** In applying 4.4.2, Part 1, the parameters (GM, z_G , etc.) required to calculate dynamic pressure due to ballast etc.) required to calculate dynamic pressure due to ballast water are to be the values for the ballast condition. The same water are to be the values for the ballast condition. The same The same parameters are to be applied where the dynamic parameters are to be applied where the dynamic pressure due pressure due to liquid other than ballast water, such as the

(Amendment related to Pa	art C of the Rules for Surve	y and Construction of	f Steel Ships ((2024 Amendment 2))

Amended			Original			Remarks
to liquid other than ballast water, such as the pressure due to fuel oil tank, is considered. However, the values in Table 4.2.2-1 may be used if the parameters are not available.						
	Table 4	 .2.2-1 Cargo Ma	ss and Cargo Density			(Newly added)
Dry bulk cargo mass $M(t)$			<u>M</u> _D .		Amendment (9) Clarifies some definitions and corrects	
	<u>Cargo density</u> ρ	$C_{C}(t/m^3)$	$\frac{M_D}{V_{Full}}$			typographical errors:
	Notes M_D : Maximum permissible cargo mass (t) in the cargo hold under consideration V_{Full} : Volume (m ³) of the hold (including its hatch coaming). Table 4.2.2-12 Simplified Formulae for Parameters					Amendment (9)
Loading condition	Draught T_{LC} (m) amidships	Z coordinate $z_G(m)$ of the centre of gravity of the ship	Metacentric height GM (m)	Radius of Gyration K_{xx} (m)		Clarifies some definitions and corrects typographical errors:
Full load condition	n T _{SC}	$0.25 \frac{B}{C_B}$	$\frac{T_{SC}}{2} + \frac{B^2}{T_{SC}C_B} \frac{3C_W - 1}{24} - z_G$	0.35 <i>B</i>		Modifies the table number
Ballast condition	T _{BAL}	$0.20 \frac{B}{C_{B_LC}}$	$\frac{T_{LC}}{2} + \frac{B^2}{T_{LC}C_{B_LC}} \frac{3C_{W_LC} - 1}{24} - z_G$	0.40 <i>B</i>		

Amended	Original	Remarks
4.3 Loads to be Considered in Strength of Primary Supporting Structures	4.3 Loads to be Considered in Strength of Primary Supporting Structures	
4.3.1 General 4.3.1.1 General 1 The loads to be considered in the requirements of strength of primary supporting structures specified in Chapter 7 and Chapter 7, Part 1 are also to be in accordance with 4.3; however, 4.4, Chapter4, Part 2-2 is to be applied where the cargo density ρ_C is more than 0.9 for double hull structure ships, or to holds with double hull structure ships that are empty in the fully loaded condition. The definition of ρ_C is as specified in Table 4.2.2-1. 2 Additional requirements for loads in the maximum load condition are to be in accordance with 4.3.2.	 4.3.1 General 4.3.1.1 General 1 The loads to be considered in the requirements of strength of primary supporting structures specified in Chapter 7 and Chapter 7, Part 1 are also to be in accordance with 4.3. 2 Additional requirements for loads in the maximum load condition are to be in accordance with 4.3.2. 	Amendment (8) Assessments for double hull Structures Clarify the application of loads to be considered for the strength of primary supporting structures on vessels carrying high- density cargo.
 4.3.2 Maximum Load Condition 4.3.2.1 General Loads for simple girders are also to be in accordance with the relevant requirements of 4.2. The loads specified in Table 4.3.2-1 are to be considered when applying the requirements for double hull. However, where deemed necessary by the Society, additional loading patterns taken the loading conditions into account specified in the loading manual may be required. 	 4.3.2 Maximum Load Condition 4.3.2.1 General Loads for simple girders are also to be in accordance with the relevant requirements of 4.2. The loads specified in Table 4.3.2-1 are to be considered when applying the requirements for double hull. However, where deemed necessary by the Society, additional loading patterns taken the loading conditions into account specified in the loading manual may be required. 	

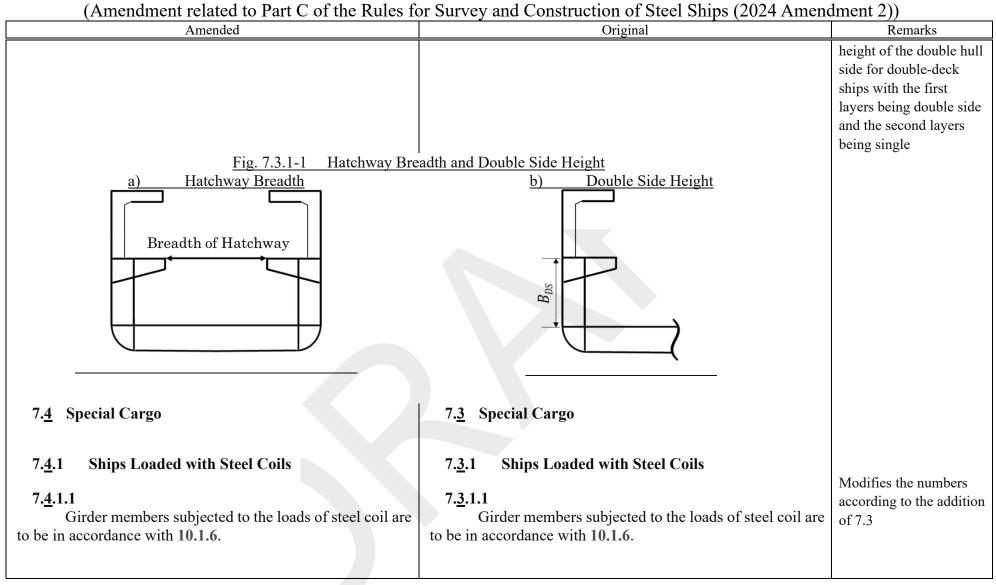
(Amenume	(Amendment related to 1 art C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))							
	Amended			Original			Remarks	
	Table 4.3.2-1 Loads to be Considered in Maximum Load Condition					Amendment (8)		
		Loading patterns				Difference between		Assessments for double hull Structures
Structures to be assessed		Draught(m)	Vertical still water bending moment (kN-m)	Loaded to be considered	Equivalent design wave	external and internal pressure to be considered (kN/m ²)		The load for assessing longitudinal and
Double bottom	S1	0.7<u>0.6</u>T_{SC}	M _{SV max}	None	HM-1 / HM-2	– Double bottom: <i>P_{DB}</i>		transverse girders of double bottom assumes
	<i>S</i> 2	T _{SC}	M _{SV min}	Cargo	<i>BP</i> -1 <i>P</i> /	Double side: P_{DS}		an evaluation loading
Double side	<i>S</i> 3	T _{SC}	M _{SV min}	Cargo	BP-1S			draught in a ballast condition. The
								evaluation loading

4.3.2.2 External Pressure

For the requirements of double hull, the hydrostatic pressure and the hydrodynamic pressure at the equivalent design wave specified in **Table 4.3.2-2** are to be considered.

4.3.2.2 External Pressure

For the requirements of double hull, the hydrostatic pressure and the hydrodynamic pressure at the equivalent design wave specified in Table 4.3.2-2 are to be considered.


draught will be amended based on the draft in the ballast condition of actual vessels.

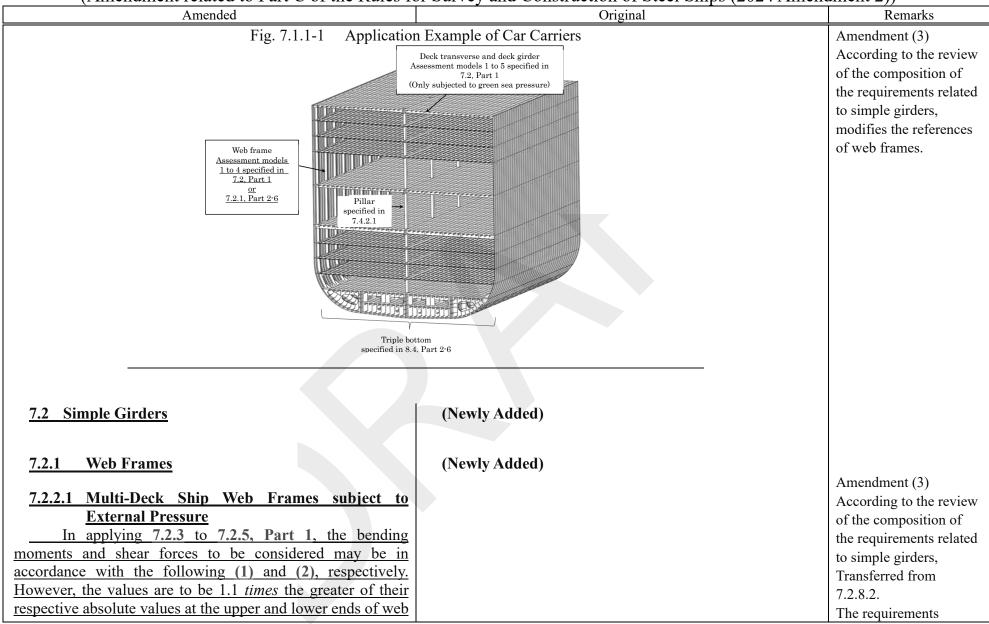
A	mended		Original	Remarks
	Table 4.	3.2-2 External and Internal Pressu	re to be Considered	Amendment (8)
Structures to be assessed		$P_{DB}(kN/m^2)^{(1)(2)}$	$P_{DS}(kN/m^2)^{(1)(2)}$	Assessments for double hull Structures
Double bottom	S1(<u>3)</u>	$P_{exs} + P_{exw}$	$P_{exs} + P_{exw}$	The load for assessing
	<i>S</i> 2	$P_{exs} + P_{exw} - P_{in_s2}$	$P_{exs} + P_{exw}$	longitudinal and
Double side	<i>S</i> 3	$P_{exs} + P_{exw} - P_{in_s3}$	$P_{exs} + P_{exw}$	transverse girders of double bottom assumes
(1) Load ca (2) When c	$g_{in_s2} = 0.5\rho g T_s$ $g_{in_s3} = \rho g T_{SC}$ alculation points	is are to be in accordance with 7.3.1.5, Part 1 for $T_{LC} = 0.7 \underline{0.6} T_{SC}$ for S1 and $T_{LC} = T_{SC}$ for	or all loading conditions.	evaluation loading draught will be amende based on the draft in the ballast condition of actual vessels. Amendment (8) Assessments for double hull Structures
				See the remark of

Amended	Original	Remarks
7.2 Simple Girders	7.2 Hatch Side Girders	
7.2.1 <u>Hatch Side Girders</u>	7.2.1 Hatch Side Girders Supported by Pillars, etc.	
7.2.1.1 Hetel Side Civilian Server and dies Dilleur ete	7 2 1 1	Amendment (9)
7.2.1.1 <u>Hatch Side Girders Supported by Pillars, etc.</u> Where hatch side girders are supported by support	7.2.1.1	Clarifies some
members such as pillars, the following requirements (1) and	Where hatch side girders are supported by support members such as pillars, the following requirements (1) and	definitions and corrects
(2) are to be complied.	(2) are to be complied.	typographical errors:
 (1) The required cross-sectional property is to be the value calculated by the method specified in 7.2.3.1, Part 1 multiplied by the value of C_{BC} shown in Fig. 7.2.1-1 according to the positional relationship between the pillar and the hatch side coaming. (2) If (a) to (c) in Fig. 7.2.1-1 are applicable, hatch side coamings may be considered in cross-sectional property calculations. 	 (1) The required cross-sectional property is to be the value calculated by the method specified in 7.2.3.1, Part 1 multiplied by the value of C_{BC} shown in Fig. 7.2.1-1 according to the positional relationship between the pillar and the hatch side coaming. (2) If (a) to (c) in Fig. 7.2.1-1 are applicable, hatch side coamings may be considered in cross-sectional property calculations. 	Modifies the numbering as in Chapter 7, Part 1.
7.2.2 Web Frames	(Newly Added)	
7.2.2.1 Web Frames Supporting Cantilever Beams In applying 7.2.2.2, Part 1 to double-deck ships with the first layers being double side and the second layers being single side, moments and shear forces are to be in accordance with 7.2.2.2(1), Part 1. However, ℓ_2 and m_2 shown in Fig. 7.2.2-1 are to be used.	(Newly Added)	Amendment (3) Reviews the composition of the requirements related to simple girders: Clarifies the assessment method in web frames supporting cantilever beams in typical general cargoes.

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))				
Amended	Original	Remarks		
Fig. 7.2.2-1 Web Frames of Double-deck Ships with the Single	First Layers being Double Side and the Second Layers being Side	(Newly Added)		
le single Side le side in acco with 7.8.3, Part 1	7 7			
7.3 Double Hull Structures	(Newly Added)			
7.3.1 General 7.3.1.1 Idealisation of Structures of Double-deck Ships with the First Layers being Double Side and the Second Layers being Single Side 1 Hatchway breadth is to be taken as the breadth of the hatchway of the first tier. (See Fig. 7.3.1-1) 2 B _{DS} is to be taken as the distance up to the upper end of the double side. (See Fig. 7.3.1-1)	(Newly Added) (Newly Added)	Amendment (9) Clarifies some definitions and corrects typographical errors: Clarify the definitions of the breadth of the hatchways and the		

106/129

Amended	Original	Remarks
Part 2-6 VEHICLES CARRIERS AND	Part 2-6 VEHICLES CARRIERS AND	Tentuks
ROLL-ON/ROLL-OFF SHIPS	ROLL-ON/ROLL-OFF SHIPS	
Chapter 4 LOADS	Chapter 4 LOADS	
4.3 Loads to be Considered in Strength of Primary Supporting Structures	4.3 Loads to be Considered in Strength of Primary Supporting Structures	
4.3.2 Maximum Load Condition	4.3.2 Maximum Load Condition	
4.3.2.2 External Pressure	4.3.2.2 External Pressure	
For the requirements of double hull, the hydrostatic	For the requirements of double hull, the hydrostatic	
pressure and the hydrodynamic pressure at the equivalent	pressure and the hydrodynamic pressure at the equivalent	
design wave specified in Table 4.3.2-2 are to be considered.	design wave specified in Table 4.3.2-2 are to be considered.	


		nended		Original	Remarks
		Table	e 4.3.2-2 External and Inte	ernal Pressure to be Considered	Amendment (8)
	Structures to be assessed		$P_{DB}(kN/m^2)^{(1)(2)}$	$P_{DS}(kN/m^2)^{(1)(2)}$	Assessments for double hull Structures
	Double bottom	S1(<u>3)</u>	$P_{exs} + P_{exw}$	$P_{exs} + P_{exw}$	See the remark of
	Daubla sida	<i>S</i> 2	$P_{exs} + P_{exw} - P_{in_s2}$	$P_{exs} + P_{exw}$	amended-original
	Double side	<i>S</i> 3	$P_{exs} + P_{exw} - P_{in_s3}$	$P_{exs} + P_{exw}$	requirements comparison table in
	in cas P_{in_s2} , P_{in_s3} : The	se of P_{DS} . e values co P_{in_s2} = P_{in_s3} =	Each value is calculated in accordan nsidering the effect due to cargo (kh = $0.5\rho gT_{SC}$ = ρgT_{SC}	et on bottom shell in case of P_{DB} . Those values act on side shell nee with 4.6.2.4 , Part 1 . V/m^2), as given by the following formulae: .3.1.5 , Part 1 for all loading conditions.	4 , Part2-1.
4.7 L	(3) P _{exw} is the ship.	to be not le	boads, $T_{LC} = 0.7T_{SC}$ for S1 and T_{LC} ess than the value of P_{exw} for HM-	 <i>c</i> = <i>T_{SC}</i> for S2 and S3. -2 at <i>x_G</i>, which is the <i>X</i> coordinate (<i>m</i>) at the centre of gravity of 4.7 Loads to be Considered in Additional Structural 	
	equirements		i Additional Structural	Requirements	
4.7.2 M	laximum Load Co	ondition		4.7.2 Maximum Load Condition	
	Deck		Deck and Movable Car o the wheels of the vehicle	 4.7.2.1 Load Acting on the Car Deck and Movable Car Deck 1 The concentrated loads due to the wheels of the vehicle 	Amendment (9) Clarifies some definitions and corrects typographical errors:

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
P_{Wh-max} :Designed maximum wheel load (kN). When the wheel load is given in units of t , multiply this value by 9.81. C_{CDK} :As given by the following formula: $C_{CDK} = C_{WDz} \frac{a_{Ze-CDK}}{g}$ C_{WDz} :Coefficient related to load condition, as specified in Table 4.4.2-8, Part 1. a_{Ze-CDK} :Envelope acceleration (m/s^2) in the vertical direction at the centre line of the car deck under consideration, obtained from the formula specified in 4.2.4.1, Part 1. In this case, $T_{LC} = T_{SC}$ and $\theta = a_4 = 0$. Further, the centre of gravity in the longitudinal direction of the car deck under consideration is taken as the centre of the distance between support points for stiffeners on the car deck accounted for.2The load to be considered in the primary supporting members attached to the movable car deck P_{LCDK} (kN/m^2) is to be in accordance with the following formula: $P_{LCDK}=(P_{LCDK_d}+w_{LCDK})\cdot(1+C_{CDK})$ P_{LCDK_d} : Deck dead weight (kN/m^2) per unit area C_{CDK} : As specified in -1 above.	P_{Wh-max} :Designed maximum wheel load (kN). When the wheel load is given in units of t , multiply this value by 9.81. C_{CDK} :As given by the following formula: $C_{CDK} = C_{WDz} \frac{a_{Ze-CDK}}{g}$ C_{WDz} :Coefficient related to load condition, as specified in Table 4.4.2-8, Part 1. a_{Ze-CDK} :Envelope acceleration (m/s^2) in the vertical direction at the centre line of the car deck under consideration, obtained from the formula specified in 4.2.4.1, Part 1. Further, the centre of gravity in the longitudinal direction of the car deck under consideration is taken as the centre of the distance between support points for stiffeners on the car deck accounted for.2The load to be considered in the primary supporting members attached to the movable car deck P_{LCDK} (kN/m^2) is to be in accordance with the following formula: $P_{LCDK,d}$: Deck dead weight (kN/m^2) per unit area C_{CDK} : As specified in -1 above.	Clarifies that parameters related to rolling motion are not used in calculation because it is simplified that acceleration is calculated at the centre line.

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

Amended	Original	Remarks
Chapter 7 STRENGTH OF PRIMARY	Chapter 7 STRENGTH OF PRIMARY	
SUPPORTING STRUCTURES	SUPPORTING STRUCTURES	
7.1 General	7.1 General	
7.1.1 Application	7.1.1 Application	
 7.1.1.2 Application Example of Assessment Model 1 An application example of assessment model applying 7.2 and 7.3, Part 1 is shown in Fig. 7.1.1-1. 2 For girder members deemed to be simple girders with structures different from that shown in Fig. 7.1.1-1, the boundary conditions and acting loads are to be considered, and the assessment model from Table 7.2.1-2, Part 1 is to be appropriately selected. 	 7.1.1.2 Application Example of Assessment Model 1 An application example of assessment model applying 7.2 and 7.3, Part 1 is shown in Fig. 7.1.1-1. 2 For girder members deemed to be simple girders with structures different from that shown in Fig. 7.1.1-1, the boundary conditions and acting loads are to be considered, and the assessment model from Table 7.2.1-1, Part 1 is to be appropriately selected. 	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

	or Survey and Construction of Steel Ships (2024 Amen	
Amended	Original	Remarks
<u>frames (See Fig. 7.2.1-1).</u>		remain unchanged.
(1) Moments acting on web frames at each node are to be		
in accordance with the following (a) and (b):		
(a) The moment $M_{i,i-1}$ (kN-m) acting on a web		
frame with node <i>i</i> being its upper end (the		
moment at the upper end of the web frame) is to		
be taken as follows (See Fig. 7.2.1-2):		
<u>i)</u> For $i = n$		
$M_{n,n-1} = 0$		
<u>ii) For $1 \le i \le n-1$</u>		
$\underline{M}_{i,i-1} = \frac{1}{2} (C_{i,i-1} - C_{i,i+1} + \phi_{i-1} - \phi_{i+1})$		
(b) The moment $M_{i,i+1}$ (kN-m) acting on a web		
frame with node <i>i</i> being its lower end (the		
moment at the lower end of the web frame) is to		
be taken as follows (See Fig. 7.2.1-2):		
i) For $1 \le i \le n-1$		
$M_{11} = -\frac{1}{2}(C_{11} = C_{11} + \phi_{12} = \phi_{12})$		
$ \underline{M_{i,i+1} = -\frac{1}{2} (C_{i,i-1} - C_{i,i+1} + \phi_{i-1} - \phi_{i+1})} \underline{ii} \text{For } i = 0 \underline{1} $		
$\underbrace{\text{ii)}}_{i} \text{For } i = 0$		
$\underline{M}_{0,1} = -\frac{1}{4} \left(C_{1,2} + C_{1,0} - \phi_0 + \phi_2 \right) - C_{0,1}$		
$\underline{C_{i,i-1}}$: Coefficient to be taken as follows:		
$\underline{C_{i,i-1}} = \frac{S_i \ell_i^2}{50} (3P_i + 2P_{i-1}) \qquad (0 < i \le n-1)$		
$\frac{C_{i,i+1} - C_{i,i+1}}{C_{i,i+1}} = \frac{C_{i,i+1} - C_{i,i+1}}{C_{i,i+1}} = \frac{C_{i,i+1} - C_{i,i+1}}{C_{i,i+1}}$		
i) For $0 \le i \le n - 2$		
$\frac{11 - 101 - 0 \le t \le n - 2}{C_{i,i+1} = -\frac{S_{i+1}\ell_{i+1}^2}{60}(2P_{i+1} + 3P_i)}$ ii) For $i = n - 1$		
ii) For $i = n - 1$		
<u>ii) For $i = n - 1$</u> $\frac{C_{n-1,n} = -\frac{S_n \ell_n^2}{120} (7P_n + 8P_{n-1})}{C_{n-1,n}}$		
	<u> </u>	<u> </u>

(Amendment related to Pa	art C of the Rules for Surve	y and Construction of Stee	l Ships	(2024 Amendment 2))

Amended	Original	Remarks
$ \frac{\phi_i: \text{ Coefficient to be taken as follows:}}{\text{i)} \text{For } i = 0} $ $ \frac{\phi_0 = 0}{\text{ii)} \text{For } 1 \le i \le n-1} $ $ \frac{\phi_i = -\frac{1}{4} (C_{i,i-1} + C_{i,i+1})}{(i,i-1)} $ $ \frac{\phi_n = -\frac{1}{2} \phi_{n-1}}{(i,i-1)} $ $ \frac{\phi_n = -\frac{1}{2} \phi_{n-1}}{(i,i-1)} $ $ \frac{\phi_n = -\frac{1}{2} \phi_{n-1}}{(i,i-1)} $ $ \frac{\phi_i = -\frac{1}{2} (kN/m^2) \text{ due to the metric hold is the inter bottom metric hold is the inter bottom metric hold is to be taken as follows:$ $ \frac{\phi_i = -\frac{1}{2} (M_{i,i-1} + M_{i-1,i}) - (1 \le i \le n) $ $ (b) The shear force F_{i,i+1} (kN) acting on a web frame with node i being its lower end (the shear force at the lower end of the web frame) is to be taken as follows:$ $ \frac{\phi_i = -\frac{1}{2} (k - 1) - (1 \le i \le n) $ $ \frac{\phi_i = -\frac{1}{2} (k - 1) - (1 \le i \le n) $ $ \frac{\phi_i = -\frac{1}{2} (k - 1) - (1 \le i \le n) $ $ \frac{\phi_i = -\frac{1}{2} (k - 1) - (1 \le i \le n) $ $ \frac{\phi_i = -\frac{1}{2} (k - 1) - (1 \le i \le n) $ $ \frac{\phi_i = -\frac{1}{2} (k - 1) - (1 \le i \le n) $		

	or survey and Construction of Steel Ships (2024 Americ	//
Amended	Original	Remarks
$\frac{i) \text{For } 0 \le i \le n-1}{F_{i,i+1} = -\frac{1}{\ell_{i+1}} (M_{i+1,i} + M_{i,i+1})} \\ + \frac{\ell_{i+1}}{6} (S_{i+1}P_{i+1} + 2S_iP_i)}{\frac{1}{6}}$ $\frac{ii) \text{For } i = 0}{F_{0,1} = -\frac{1}{\ell_1} (M_{1,0} + M_{0,1}) + \frac{\ell_1}{6} (S_1P_1 + 2S_1P_0)}{M_{1,0}, M_{0,1}, M_{i+1,i}, M_{i,i+1}, \ell_i, S_i \text{ and } P_i:}$		Remarks
As specified in (1) above Fig. 7.2.1-1Example of Application	(Newly Added)	
P_{2} P_{1} P_{0} P_{1} P_{0} P_{1} P_{0} P_{1} P_{0} P_{1} P_{1} P_{0} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{2} P_{1} P_{1} P_{2} P_{2} P_{2} P_{2} P_{1} P_{2} P_{2		

(.	Amendment related to Part C	f the Rules for Surv	ey and Construction	of Steel Ships	(2024 Amendment 2))
			2	1	())

Amended	Original	Remarks
Fig. 7.2.1-2Moment Acting on a Web Frame at Node <i>i</i>	(Newly Added)	
$P_{n-1} \land f_{n} \ell_{n}$ $P_{n-1} \land f_{n-1} \land f_{n-1}$ S_{n-1}, ℓ_{n-1} $P_{i} \land f_{i} \land f_{i}$ $P_{i} \land f_{i} \land f_{i} \land f_{i}$ $P_{i} \land f_{i} \land f_{$		
Chapter 9 FATIGUE	Chapter 9 FATIGUE	
9.5 Screening Assessment9.5.6 Fatigue Strength Assessment	9.5 Screening Assessment9.5.6 Fatigue Strength Assessment	
9.5.6 Fatigue Strength Assessment 9.5.6.2 Reference Stress for Fatigue Strength Assessment Hot spot stress ranges used in screening assessments, $\Delta\sigma_{FS,(j)}$, are $\Delta\sigma_{FS_ort,(j)}$ and $\Delta\sigma_{FS_par,(j)}$, and fatigue damage is to be calculated for each stress range. where, $\Delta\sigma_{FS_ort,(j)} = \max_{i} (\Delta\sigma_{FS_ort,i(j)})$ $\Delta\sigma_{FS_par,(j)} = \max_{i} (\Delta\sigma_{FS_par,i(j)})$ $\Delta\sigma_{FS_par,(j)} = \max_{i} (\Delta\sigma_{FS_par,i(j)})$ $\Delta\sigma_{FS_ort,i(j)}$: Hot spot stress range (N/mm ²) for screening assessment according to the hot	9.5.6 Fatigue Strength Assessment 9.5.6.2 Reference Stress for Fatigue Strength Assessment Hot spot stress ranges used in screening assessments, $\Delta \sigma_{FS,(j)}$, are $\Delta \sigma_{FS_ort,(j)}$ and $\Delta \sigma_{FS_par,(j)}$, and fatigue damage is to be calculated for each stress range. where, $\Delta \sigma_{FS_ort,(j)} = \max_{i} (\Delta \sigma_{FS_ort,i(j)})$ $\Delta \sigma_{FS_par,(j)} = \max_{i} (\Delta \sigma_{FS_par,i(j)})$ $\Delta \sigma_{FS_par,(j)} = \max_{i} (\Delta \sigma_{FS_par,i(j)})$ $\Delta \sigma_{FS_ort,i(j)}$: Hot spot stress range (N/mm ²) for screening assessment according to the hot	Amendment (9) Clarifies some definitions and corrects typographical errors: Specifies the correction factor corresponding to the wave environment in screening assessment

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

	Original	//
Amended	Original	Remarks
spot stress in the direction orthogonal to the	spot stress in the direction orthogonal to the	
weld line, as obtained from the following	weld line, as obtained from the following	
formula:	formula:	
$\Delta \sigma_{FS_ort,i(j)} = f_{mean_ort,i(j)} \cdot \Delta \sigma_{HS_ort,i(j)}$	$\Delta \sigma_{FS_ort,i(j)} = f_{mean_ort,i(j)} \cdot \Delta \sigma_{HS_ort,i(j)}$	
$\Delta \sigma_{FS_par,i(j)}$: Hot spot stress range (N/mm ²) for	$\Delta \sigma_{FS_par,i(j)}$: Hot spot stress range (N/mm ²) for	
screening assessment according to the hot	screening assessment according to the hot	
spot stress in the direction parallel to the	spot stress in the direction parallel to the	
weld line, as obtained from the following	weld line, as obtained from the following	
formula:	formula:	
$\Delta \sigma_{FS_{par},i(j)} = 0.72 \cdot f_{mean_{par},i(j)} \cdot \Delta \sigma_{HS_{par},i(j)}$	$\Delta \sigma_{FS_par,i(j)} = 0.72 \cdot f_{mean_par,i(j)}$	
f_R : Correction factor corresponding to the wave	$\cdot \Delta \sigma_{HS_par,i(j)}$	
environment in accordance with 9.5.2.1, Part 1		
$f_{mean_ort,i(j)}, f_{mean_par,i(j)}$: Correction factor	$f_{mean_ort,i(j)}, f_{mean_par,i(j)}$: Correction factor	
for mean stress effect, as	for mean stress effect, as	
obtained by the following	obtained by the following	
formulas for each	formulas for each	
combination of	combination of	
$\Delta \sigma_{HS_ort,i(j)}$,	$\Delta \sigma_{HS_ort,i(j)}$,	
$\sigma_{mean_ort,i(j)}$ and	$\sigma_{mean_ort,i(j)}$ and	
$\Delta \sigma_{HS_par,i(j)}$,	$\Delta \sigma_{HS_par,i(j)}$,	
$\sigma_{mean_par,i(j)}$	$\sigma_{mean_par,i(j)}$	
respectively.	respectively.	
$\int f_{mean,i(j)} = \min\left[1.0, 0.8 + 0.2 \frac{\sigma_{mCor,i(j)}}{2\Delta\sigma_{HS,i(j)}}\right] : \sigma_{mCor,i(j)} \ge 0$	$\int f_{mean,i(j)} = \min \left[1.0, 0.8 + 0.2 \frac{\sigma_{mCor,i(j)}}{2\Delta\sigma_{HS,i(j)}} \right] : \sigma_{mCor,i(j)} \ge 0$	
$\int f_{mean,i(j)} = \max\left[0.6, 0.8 + 0.2 \frac{\sigma_{mCor,i(j)}}{2\Delta\sigma_{HS,i(j)}}\right] : \sigma_{mCor,i(j)} < 0$	$\begin{cases} f_{mean,i(j)} = \min\left[1.0, 0.8 + 0.2 \frac{\sigma_{mCor,i(j)}}{2\Delta\sigma_{HS,i(j)}}\right] : \sigma_{mCor,i(j)} \ge 0\\ f_{mean,i(j)} = \max\left[0.6, 0.8 + 0.2 \frac{\sigma_{mCor,i(j)}}{2\Delta\sigma_{HS,i(j)}}\right] : \sigma_{mCor,i(j)} < 0 \end{cases}$	
Where, $\sigma_{mCor,i(j)}$ is to be obtained as	Where, $\sigma_{mCor,i(j)}$ is to be obtained as	
follows:	follows:	

Amended	Original	Remarks
$\int \sigma_{mCor,i(j)} = \sigma_{mean,i(j)} : \sigma_{max} \le \sigma_{YEq}$	$\int \sigma_{mCor,i(j)} = \sigma_{mean,i(j)} : \sigma_{max} \le \sigma_{YEq}$	
$\begin{cases} \sigma_{mCor,i(j)} = \sigma_{YEq} - \sigma_{max} + \sigma_{mean,i(j)} : \sigma_{max} > \sigma_{YEq} \\ \sigma_{max} = \max_{i(j)} (\Delta \sigma_{HS,i(j)} + \sigma_{mean,i(j)}) \\ \sigma_{YEq} = \max(315, \sigma_Y) \end{cases}$	$\begin{cases} \sigma_{mCor,i(j)} = \sigma_{YEq} - \sigma_{max} + \sigma_{mean,i(j)} : \sigma_{max} > \sigma_{YEq} \\ \sigma_{max} = \max_{i(j)} (\Delta \sigma_{HS.i(j)} + \sigma_{mean,i(j)}) \\ \sigma_{YEq} = \max(315, \sigma_Y) \end{cases}$	
$\Delta \sigma_{HS_ort,i(j)}$, $\Delta \sigma_{HS_par,i(j)}$: As given in 9.5.5.1-2.	$\Delta \sigma_{HS_ort,i(j)}$, $\Delta \sigma_{HS_par,i(j)}$: As given in 9.5.5.1-2 .	
$\sigma_{mean_ort,i(j)}, \sigma_{mean_par,i(j)}$: As given in 9.5.5.1-2.	$\sigma_{mean_ort,i(j)}, \sigma_{mean_par,i(j)}$: As given in 9.5.5.1-2.	
Part 2-7	TANKERS	
Chapter 4	LOADS	
4.3 Loads to be Considered in Strength of Primary S	Supporting Structures	
4.3.2 Maximum Load Condition		
4.3.2.2 External Pressure For the requirements of double hull, the hydrostatic pr wave specified in Table 4.3.2-2 are to be considered.	ressure and the hydrodynamic pressure at the equivalent design	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

A	mended		Original	Remarks
	Table 4	3.2-2 External and Internal Pressu	are to be Considered	Amendment (8)
Structures to be assessed		$P_{DB}(kN/m^2)^{(1)(2)}$	$P_{DS}(kN/m^2)^{(1)(2)}$	Assessments for doub hull Structures
Double bottom	S1(<u>3)</u>	$P_{exs} + P_{exw}$	$P_{exs} + P_{exw}$	See the remark of
Double bottom	<i>S</i> 2	$P_{exs} + P_{exw} - (P_{ls} + P_{ld})$	$P_{exs} + P_{exw} - (P_{ls} + P_{ld})$	amended-original
Double side	<i>S</i> 3	$P_{exs} + P_{exw}$	$P_{exs} + P_{exw}$	requirements
				comparison table in
Notes: P_{exs} , P_{exw} : Hyd in ca P_{ls} , P_{ld} : Stati	se of P_{DS} . Eac c and dynamic	n value is calculated in accordance with 4.6.2. pressure due to liquid cargo (kN/m^2) act on introduced on the second	her bottom plating in case of P_{DB} . Those values act	comparison table in Table 4.4.2-2, Chapte 4 , Part2-1.
Notes: P_{exs} , P_{exw} : Hyd in ca P_{ls} , P_{ld} : Stations (1) The parameter S1, $S3$: As S2, $S4$: As	costatic and Hy se of P_{DS} . Eac c and dynamic de shell in case rs (<i>GM</i> , z_G , K_2 given by the fo given by the fo	drodynamic pressure (kN/m^2) act on bottom sh n value is calculated in accordance with 4.6.2 .	tell in case of P_{DB} . Those values act on side shell 4, Part 1. There bottom plating in case of P_{DB} . Those values act be with 4.6.2.5, Part 1. Follows. e 4.2.2-1 4.2.2-1	Table 4.4.2-2, Chapte

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment	(Ame	endment related to	Part C of the Ru	les for Survey and	d Construction of Steel	Ships (20)24 Amendment 2
--	------	--------------------	------------------	--------------------	-------------------------	-----------	-----------------

	or Survey and Construction of Steel Ships (2024 Americ	
Amended	Original	Remarks
Part 2-8SHIPS CARRYING LIQUEFIED	Part 2-8 SHIPS CARRYING LIQUEFIED	
GASES IN BULK	GASES IN BULK	
(INDEPENDENT SPHERICAL TANKS OF	(INDEPENDENT SPHERICAL TANKS OF	
TYPE B)	TYPE B)	
Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	
8.4 Boundary Conditions and Loads Conditions	8.4 Boundary Conditions and Loads Conditions	
8.4.2 Loads Condition	8.4.2 Loads Condition	A
8.4.2.2 Method of Applying Loads to the Structural Model 1 In applying 8.5.2, Part 1, the vertical bending moment and horizontal bending moment act on the target hold are to be adjusted in accordance with the following (1) to (3) based upon the boundary conditions specified in 8.4.1.1 and the value of the moment for each analysis case. (1) (Omitted) (2) The adjustment vertical bending moment M_{V-end} and adjustment horizontal bending moment M_{H-end} (kN-m) are obtained by the following formulae: $M_{V-end} = M_{V-targ} - M_{V-max}$, for $M_{V-targ} \ge 0$ $M_{V-end} = M_{V-targ} - M_{V-min}$, for $M_{V-targ} < 0$ $M_{H-end} = M_{H-targ} - M_{H-max}$, for $M_{H-targ} \ge 0$ $M_{H-end} = M_{H-targ} - M_{H-min}$, for $M_{H-targ} < 0$ M_{V-targ} , M_{H-targ} : The maximum or	 8.4.2.2 Method of Applying Loads to the Structural Model 1 In applying 8.5.2, Part 1, the vertical bending moment and horizontal bending moment act on the target hold are to be adjusted in accordance with the following (1) to (3) based upon the boundary conditions specified in 8.4.1.1 and the value of the moment for each analysis case. (1) (Omitted) (2) The adjustment vertical bending moment M_{V-end} and adjustment horizontal bending moment M_{H-end} (kN-m) are obtained by the following formulae: M_{V-end} = M_{V-targ} - M_{V-max}, for M_{V-targ} ≥ 0 M_{V-end} = M_{V-targ} - M_{V-min}, for M_{V-targ} < 0 M_{V-end} = M_{H-targ} - M_{H-max}, for M_{H-targ} < 0 M_{V-end} = M_{H-targ} - M_{H-min}, for M_{H-targ} < 0 M_{V-targ}, M_{H-targ}: The maximum or 	Amendment (9) Clarifies some definitions and corrects typographical errors: Corrects the typographical errors in adjustment moment

120/129

minimum value in the target hold of the vertical bending moment and horizontal bending moment (kN-m) specified in Table 8.4.2-1 minimum value in the target hold of the vertical bending moment and horizontal bending moment (kN-m) specified in Table 8.4.2-1 (3) (Omitted) (Omitted) (Omitted) Part 2-9 SHIPS CARRYING LIQUEFIED GASES IN BULK Part 2-9 (INDEPENDENT PRISMATIC TANKS TYPE A/B) Part 2-9 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B) Chapter 4 LOADS 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis Chapter 4 LOADS 4.3.2 Maximum Load Condition 4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure		or Survey and Construction of Steel Ships (2024 Amend	
of the vertical bending moment and horizontal bending moment (kN-m) specified in Table 8.4.2-1of the vertical bending moment and horizontal bending moment (kN-m) specified in Table 8.4.2-1(3) (Omitted)Part 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Part 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSPart 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSChapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure	Amended	Original	Remarks
horizontal bending moment (kN-m) specified in Table 8.4.2-1 horizontal bending moment (kN-m) specified in Table 8.4.2-1 (3) (Omitted) (Omitted) Part 2-9 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B) Chapter 4 LOADS 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3.2 Maximum Load Condition 4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure	•	6	
specified in Table 8.4.2-1(3) (Omitted)specified in Table 8.4.2-1(3) (Omitted)(3) (Omitted)Part 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Part 2-9Ships CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Part 2-9Chapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure	of the vertical bending moment and	of the vertical bending moment and	
specified in Table 8.4.2-1(3) (Omitted)specified in Table 8.4.2-1(3) (Omitted)(3) (Omitted)Part 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Part 2-9Ships Cargo Hold AnalysisChapter 4Loads to be Considered in Strength Assessment by Cargo Hold AnalysisChapter 4Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.32Maximum Load Condition4.32Maximum Load Condition4.32.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.32.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.32.4	horizontal bending moment (kN-m)	horizontal bending moment (kN-m)	
 (3) (Omitted) (4) Part 2-9 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B) Chapter 4 LOADS (1) Chapter 4 LOADS (2) Chapter 4 LOADS (3) (Omitted) (1) Chapter 4 LOADS (1) Chapter 4 LOADS (2) Chapter 4 LOADS (3) (Omitted) (1) Chapter 4 LOADS (2) Chapter 4 LOADS (3) (Omitted) (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (3) (Omitted) (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (3) Loads to be Considered in Strength Assessment by Cargo Hold Analysis (4) Loads to be Considered in Strength Assessment by Cargo Hold Analysis 	e	e v v	
Part 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Part 2-9SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSA/B)Chapter 4LOADSChapter 44.3Loads to be Considered in Strength Assessment by Cargo Hold AnalysisChapter 44.3.2Maximum Load Condition4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure1.3.2.42.4.2.4	1	1	
GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSChapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressureIn applying 4.6.2.4, Part 1, hydrodynamic pressure		(5) (5)	
GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSChapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressureIn applying 4.6.2.4, Part 1, hydrodynamic pressure			
GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSChapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressureIn applying 4.6.2.4, Part 1, hydrodynamic pressure	Part 2-9 SHIPS CARRYING LIOUEFIED	Part 2-9 SHIPS CARRYING LIQUEFIED	
(INDEPENDENT PRISMATIC TANKS TYPE A/B)(INDEPENDENT PRISMATIC TANKS TYPE A/B)Chapter 4LOADSChapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressureIn applying 4.6.2.4, Part 1, hydrodynamic pressure	2		
A/B) A/B) Chapter 4 LOADS Chapter 4 LOADS 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis Chapter 4 LOADS 4.3.2 Maximum Load Condition 4.3.2 Maximum Load Condition 4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure 4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure			
Chapter 4LOADS4.3Loads to be Considered in Strength Assessment by Cargo Hold Analysis4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure1Analysis<	(INDEPENDENT PRISMATIC TANKS TYPE	(INDEPENDENT PRISMATIC TANKS TYPE	
 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3.2 Maximum Load Condition 	A/B)	A/B)	
 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3.2 Maximum Load Condition 			
 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3.2 Maximum Load Condition 			
 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3 Loads to be Considered in Strength Assessment by Cargo Hold Analysis 4.3.2 Maximum Load Condition 	Chapter 4 LOADS	Chapter 4 LOADS	
Cargo Hold AnalysisCargo Hold Analysis4.3.2Maximum Load Condition4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure		Chapter 4 Londo	
Cargo Hold AnalysisCargo Hold Analysis4.3.2Maximum Load Condition4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure			
Cargo Hold AnalysisCargo Hold Analysis4.3.2Maximum Load Condition4.3.2Maximum Load Condition4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure	4.3 Loads to be Considered in Strength Assessment by	4.3 Loads to be Considered in Strength Assessment by	
 4.3.2 Maximum Load Condition 	5		
4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure			
4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure4.3.2.4 External Pressure due to Seawater In applying 4.6.2.4, Part 1, hydrodynamic pressure			
In applying 4.6.2.4, Part 1, hydrodynamic pressure In applying 4.6.2.4, Part 1, hydrodynamic pressure	4.3.2 Maximum Load Condition	4.3.2 Maximum Load Condition	
In applying 4.6.2.4, Part 1, hydrodynamic pressure In applying 4.6.2.4, Part 1, hydrodynamic pressure	4324 External Programs due to Securator	1324 External Prossume due to Securator	
P_{exw} specified in (1) to (2) is to be additionally considered. P_{exw} specified in (1) to (2) is to be additionally considered.			
(1) Hydrodynamic pressure in the equivalent design wave (1) Hydrodynamic pressure in the equivalent design wave			
AV is in accordance with Table 4.3.2-5 and Fig. 4.3.2- AV is in accordance with Table 4.3.2-5 and Fig. 4.3.2-	AV is in accordance with Table 4.3.2-5 and Fig. 4.3.2-	<i>AV</i> is in accordance with Table 4.3.2-5 and Fig. 4.3.2-	
1. 1.		1.	
(2) Hydrodynamic pressure in the equivalent design wave (2) Hydrodynamic pressure in the equivalent design wave	(2) Hydrodynamic pressure in the equivalent design wave	(2) Hydrodynamic pressure in the equivalent design wave	
PCL is in accordance with Table 4.3.2-6 and Fig. PCL is in accordance with Table 4.3.2-6 and Fig.	PCL is in accordance with Table 4.3.2-6 and Fig.	PCL is in accordance with Table 4.3.2-6 and Fig.	
4.3.2-2. 4.3.2-2.	4.3.2-2.	4.3.2-2.	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 2))

(Amended		Original	Remarks
	Table 4.3.2-5 Hydrodynamic Pressur	re P _{exw} in Equivalent Design	n Wave AV	Amendment (7)
	Hydrodyna	mic pressure P_{exw} (kN/m ²)		Revises the simplified
	$z \leq T_{LC}$	$T_{LC} < z \le T_{LC} + h_W$	$z > T_{LC} + h_W$	formula for the ship' s hull centre of gravity to
AV-1P	$P_{exw} = \max(P_{AV}, \rho g(z - T_{LC}))$			enhance accuracy.
AV-2P	$P_{exw} = \max\left(-P_{AV}, \rho g(z - T_{LC})\right)$		0	See the remark of
AV-1S	$P_{exw} = \max\left(P_{AV}, \rho g(z - T_{LC})\right)$	$P_{WL} - \rho g(z - T_{LC})$	0	amended-original
AV-2S	$P_{exw} = \max\left(-P_{AV}, \rho g(z - T_{LC})\right)$			requirements comparison table in
(Omi P _{AV} = (Omi P _{AV2}	As given by the following formulae: For equivalent design waves $AV \cdot 1P$ and $AV \cdot 2$ For $y > 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For $y \le 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For equivalent design waves $AV \cdot 1S$ and $AV \cdot 2$ For $y > 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For $y \le 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For $y \le 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For $y \le 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For $y \le 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$ For $y \le 0.0$, $P_{AV2} = \rho g \left\{ 0.6 \sin \left(\frac{2(x - x_0)}{L_c} \right) \right\}$	$ \begin{array}{l} P:\\ \frac{G}{g} \\ \frac{G}{\pi} \\ \pi \\ \end{array} - [-2.0 \cdot 10^{-5} \cdot (x - x_G) + 2.0 \\ \frac{G}{g} \\ \pi \\ \end{array} \\ - 1.0 \cdot 10^{-3} \cdot (y^2 + z^2) \\ \\ \frac{G}{g} \\ \frac{G}{\pi} \\ \end{array} \\ \end{array} \\ - [-2.0 \cdot 10^{-5} \cdot (x - x_G) + 2.0 \\ \\ \frac{H}{hp, to be taken as } \\ x_G $	$\cdot 10^{-3}](y^2 + z^2)$	Table 4.2.4-1.

PCL-1	$z \leq T_{LC}$	$\frac{P_{exw} \text{ in Equivalent Design}}{\text{tic pressure } P_{exw} (kN/m^2)}$ $T_{LC} < z \le T_{LC} + h_W$		Amendment (7) Revises the sim
PCL-1	Hydrodynam $z \leq T_{LC}$	ic pressure P_{exw} (kN/m ²)		· · · · · · · · · · · · · · · · · · ·
	-	$T_{LC} < z \le T_{LC} + h_W$		formula for the
			$z > T_{LC} + h_W$	hull centre of g
	$P_{exw} = \max\left(-P_{PCL}, \rho g(z - T_{LC})\right)$	$P_{WL} - \rho g(z - T_{LC})$	0	enhance accura
PCL-2	$P_{exw} = \max(P_{PCL}, \rho g(z - T_{LC}))$	$F_{WL} = \rho g (z - I_{LC})$	0	See the remark
$P_{PCL}: As given by P_{PCL} = 0.5$ (Omitted) $P_{PCL3}: As$ P_{I} R_{I}	fied in Table 4.3.2-5. by the following formula: $5C_{R_{PCL}}C_{NL_{PCL}}C_MC_{PCL1}H_{S_{PCL}}(P_{PCL1} + P_{PCL2} + P_{PCL2})$ is given by the following formula: $P_{PCL3} = -\rho g R_{5_PCL} \left(x - \frac{L_{c}}{2}x_{c}\right) \cos\left(\left(0.05\sqrt{2}x_{c}\right)^{2}\right)$ R_{5_PCL} : As given by the following formula: $R_{5_PCL} = \frac{3\pi(1 - C_{W_LC})}{2B} \left(\frac{\lambda_{PCL}}{L_{c}}\right)^{4}$ specified in Table 4.3.2-5.			amended-origin requirements comparison tab Table 4.2.4-1.

	Amended				Original		Remarks
	Table 4.	3.2-7 Phase of Ir	ncident Wave in	the Equivalent Design	Wave	А	mendment (7)
		$C_{RE} > 0$	$C_{RE} < 0$	$C_{RE} = 0$ and $C_{IM} \ge 0$	$C_{RE} = 0$ and $C_{IM} < 0$		evises the simplified
	C_{AV2}, C_{PCL2}	1	-1	1	-1	hu	ormula for the ship's all centre of gravity to
	$\varepsilon_{AV1}, \ \varepsilon_{PCL1}$		hance accuracy.				
Note: C_{RE} :	As given by the follow		($\left[\left(\begin{array}{c} \frac{L}{2}\right) - \right]$		ar	ee the remark of mended-original quirements
	For equivalent desig	n waves <i>AV</i> -1 <i>P</i> and <i>AV</i>	$L^{2}P, C_{RE} = \cos\left(\pi\right)$	$+\frac{2\pi}{\lambda_{AV}}\left[\frac{\left(x-\frac{1}{2}x_{G}\right)}{2}+\frac{\sqrt{3}}{2}y\right]$			omparison table in able 4.2.4-1.
				$+\frac{2\pi}{\lambda_{AV}}\left[\frac{\left(x-\frac{L_{E}}{2}x_{G}\right)}{2}+\frac{\sqrt{3}}{2}y\right]$ $+\frac{2\pi}{\lambda_{AV}}\left[\frac{\left(x-\frac{L_{E}}{2}x_{G}\right)}{2}-\frac{\sqrt{3}}{2}y\right]$			
	For equivalent desig	n wave <i>PCL</i> , $C_{RE} = c$	$\cos\left(\pi + \frac{2\pi}{\lambda_{PCL}}\left(x - \frac{L_e}{2}\right)\right)$	$\left(\frac{1}{2} \frac{x_G}{x_G}\right)$			
	λ_{AV} : As specified in T λ_{PCL} : As specified in T	Table 4.3.2-6.					
C _{IM} :	x_G : As specified in Ta As given by the follow						
	For equivalent desig	n waves AV-1P and AV	$L-2P, C_{IM} = \sin\left(\frac{2\pi}{\lambda_A}\right)$	$\frac{1}{v}\left[-\frac{\left(x-\frac{L_{\mathcal{E}}}{2}x_{\mathcal{G}}\right)}{2}-\frac{\sqrt{3}}{2}y\right]\right)$			
	For equivalent design	n waves AV-1S and AV	$42S, C_{IM} = \sin\left(\frac{2\pi}{\lambda_{AV}}\right)$	$\frac{1}{\sqrt{2}}\left[-\frac{\left(x-\frac{L_{\overline{c}}}{2}x_{\overline{c}}\right)}{2}+\frac{\sqrt{3}}{2}y\right]$			
	For equivalent desig	n wave <i>PCL</i> , $C_{IM} = st$	$\ln\left(-\frac{2\pi}{\lambda_{PCL}}\left(x-\frac{L_E}{2}x\right)\right)$	$(\underline{G}))$			

(A	Amendment	related t	o Part C	of the	Rules	for Survey	and Co	onstruction	of Steel	Ships	(2024)	Amendmer	it 2))
· ·						2				1	\		,,

			nended		J Burvey and Cons	Original		Remarks
1In apequipped withis no swash lto cargo.2In apposition with	plying th swas bulkhea pplying n respe	I Pressur 4.6.2.5 , 1 sh bulkhead when c 4.6.2.5 , act to the	e due to Loaded Liquid Part 1, where the cargo tat ad, it is to be assumed that calculating dynamic pressure Part 1, the acceleration at equivalent design wave AV with Table 4.3.2-8 Acceler	there e due t any 7 and	 In applying equipped with swast is no swash bulkhea to cargo. In applying position with respect PCL is to be in accord 	Pressure due to Loaded Li 4.6.2.5, Part 1 , where the h bulkhead, it is to be assun d when calculating dynamic 4.6.2.5, Part 1 , the accele ct to the equivalent design ordance with Table 4.3.2-8 .	cargo tank is ned that there pressure due ration at any	Amendment (7)
			nsverse acceleration a_Y (m/s^2)	Vertical acceleration a_Z (<i>m/s</i> ²)		Revises the simplified formula for the ship's		
		AV-1P	$-0.5g \cdot \sin \phi \\ +0.1a_1 - 0.95a_5(z - z_G)$		$0.1g \cdot \sin \theta 1GMa_2 + 0.1a_4(z - z_G) + [-0.9a_6(x - x_G)]$	$ \left(1.7 \frac{\lambda_{AV}}{L_C} - 0.6 \right) a_3 - 0.1 a_4 y + 0.95 a_5 (x - x_G) $		hull centre of gravity to enhance accuracy.
	AV	AV -2 P	$\begin{array}{c} 0.5g \cdot \sin \phi \\ -0.1a_1 + 0.95a_5(z-z_G) \end{array}$	-0.0	$-0.1g \cdot \sin \theta$ $1GMa_2 - 0.1a_4(z - z_G)$ $+[0.9a_6(x - x_G)]$	$ +0.95a_5(x-x_G) \\ \left(-1.7\frac{\lambda_{AV}}{L_C}+0.6\right)a_3+0.1a_4y \\ -0.95a_5(x-x_G) $		See the remark of amended-original
	AV	AV -1S	$-0.5g \cdot \sin \phi \\ +0.1a_1 - 0.95a_5(z - z_G)$	-0.0	$-0.1g \cdot \sin \theta$ $1GMa_2 - 0.1a_4(z - z_G)$ $+[0.9a_6(x - x_G)]$	$ \left(1.7 \frac{\lambda_{AV}}{L_C} - 0.6 \right) a_3 + 0.1 a_4 y + 0.95 a_5 (x - x_G) $		requirements comparison table in Table 4.2.4-1.
		AV -2 S	$0.5g \cdot \sin \phi$ $-0.1a_1 + 0.95a_5(z - z_G)$		$0.1g \cdot \sin \theta 1GMa_2 + 0.1a_4(z - z_G) + [-0.9a_6(x - x_G)]$	$\left(-1.7\frac{\lambda_{AV}}{L_C} + 0.6\right)a_3 - 0.1a_4y \\ -0.95a_5(x - x_G)$		
	PCL	PCL-1	$-0.15 \frac{T_{LC}}{D} \sin \phi - 0.3 \frac{T_{LC}}{D} a_1 + \left(-40 \frac{f_T}{L_C} - 0.2\right) a_5(z - z_G)$		0	$-0.95a_{5}(x - x_{G})$ $15\frac{f_{T}}{L_{C}}a_{3}$ $-\left(-40\frac{f_{T}}{L_{C}} - 0.2\right)a_{5}(x - x_{G})$		
	<i>F</i> CL	PCL-2	$+ \left(-40 \frac{f_T}{L_C} - 0.2\right) a_5(z - z_G)$ $0.15 \frac{T_{LC}}{D} \sin \phi + 0.3 \frac{T_{LC}}{D} a_1$ $+ \left(40 \frac{f_T}{L_C} + 0.2\right) a_5(z - z_G)$		0	$-\left(-40\frac{f_T}{L_C} - 0.2\right)a_5(x - x_G) -15\frac{f_T}{L_C}a_3 -\left(40\frac{f_T}{L_C} + 0.2\right)a_5(x - x_G)$		

(Amendment related to Part C of the Rules for Sur	ey and Construction of Steel Shi	ips (2024 Amendment 2))
---	----------------------------------	-------------------------

Amended	Original	Remarks
Notes: $a_1, a_2, a_3, a_4, a_5, a_6$: As specified in 4.2.3, Part 1. θ, ϕ : As specified in 4.2.2, Part 1. x_G : X coordinate (m) at the centre of gravity of the ship, taken calculated based on the weight distribution according to t z_G : Z coordinate (m) at the centre of gravity of the ship in the GM: Metacentric height (m), the value specified in the loading λ_{AV} : As specified Table 4.3.2-5.	e loading condition to be considered	
4.4 Loads to be Considered in Fatigue 4.4.2 Cyclic Load Condition	4.4 Loads to be Considered in Fatigue 4.4.2 Cyclic Load Condition	
4.4.2.5 Internal Pressure due to Loaded Liquid In applying 4.7.2.5, Part 1 , the acceleration at any position with respect to the equivalent design wave <i>AV</i> and <i>PCL</i> is to be in accordance with Table 4.4.2-5 .	4.4.2.5 Internal Pressure due to Loaded Liquid In applying 4.7.2.5, Part 1 , the acceleration at any position with respect to the equivalent design wave AV and PCL is to be in accordance with Table 4.4.2-5 .	

	An	nended		Original	Remarks
		Table 4.4.2-5 Acceler	cation at Any Position a_X , or	a_Y, a_Z	Amendment (7)
Equiv	alent design wave	Longitudinal acceleration a_X (m/s^2)	Transverse acceleration a_Y (m/s^2)	Vertical acceleration a_Z (<i>m</i> /s ²)	Revises the simplified formula for the ship'
	AV-1P	$-0.5g \cdot \sin \phi \\ +0.1a_1 - 0.95a_5(z - z_G)$	$0.1g \cdot \sin \theta +0.01GMa_2 + 0.1a_4(z - z_G) +[-0.9a_6(x - x_G)]$	$ \left(1.7 \frac{\lambda_{AV}}{L_C} - 0.6 \right) a_3 - 0.1 a_4 y + 0.95 a_5 (x - x_G) $	hull centre of gravity enhance accuracy.
AV	AV -2 P	$0.5g \cdot \sin \phi$ $-0.1a_1 + 0.95a_5(z - z_G)$	$-0.1g \cdot \sin \theta \\ -0.01GMa_2 - 0.1a_4(z - z_G) \\ + [0.9a_6(x - x_G)]$	$ \left(-1.7 \frac{\lambda_{AV}}{L_C} + 0.6 \right) a_3 + 0.1 a_4 y -0.95 a_5 (x - x_G) $	See the remark of amended-original
AV	AV - 1S	$-0.5g \cdot \sin \phi \\ +0.1a_1 - 0.95a_5(z - z_G)$	$-0.1g \cdot \sin \theta -0.01GMa_2 - 0.1a_4(z - z_G) +[0.9a_6(x - x_G)]$	$\left(1.7\frac{\lambda_{AV}}{L_C} - 0.6\right)a_3 + 0.1a_4y + 0.95a_5(x - x_G)$	requirements comparison table in Table 4.2.4-1.
	AV -2 S	$\begin{array}{c} 0.5g \cdot \sin \phi \\ -0.1a_1 + 0.95a_5(z-z_G) \end{array}$	$0.1g \cdot \sin \theta + 0.01GMa_2 + 0.1a_4(z - z_G) + [-0.9a_6(x - x_G)]$	$ \left(-1.7 \frac{\lambda_{AV}}{L_C} + 0.6 \right) a_3 - 0.1 a_4 y -0.95 a_5 (x - x_G) $	
PCL	PCL-1	$-0.15 \frac{T_{LC}}{D} \sin \phi - 0.3 \frac{T_{LC}}{D} a_1 + \left(-40 \frac{f_T}{L_C} - 0.2\right) a_5(z - z_G)$	0	$-0.95a_{5}(x - x_{G})$ $15\frac{f_{T}}{L_{C}}a_{3}$ $-\left(-40\frac{f_{T}}{L_{C}} - 0.2\right)a_{5}(x - x_{G})$	
PCL	PCL -2	$+\left(-40\frac{f_T}{L_C} - 0.2\right)a_5(z - z_G)$ $0.15\frac{T_{LC}}{D}\sin\phi + 0.3\frac{T_{LC}}{D}a_1$ $+\left(40\frac{f_T}{L_C} + 0.2\right)a_5(z - z_G)$	0	$-\left(-40\frac{f_T}{L_C} - 0.2\right)a_5(x - x_G) \\ -15\frac{f_T}{L_C}a_3 \\ -\left(40\frac{f_T}{L_C} + 0.2\right)a_5(x - x_G)$	
θ, φ:	a_2, a_3, a_4, a_4 As specified	5, <i>a</i> ₆ : As specified in 4.2.3, 1 in 4.2.2, Part 1.			
x_G : z_G : GM: λ_{AV} : A	calculated b Z coordinate Metacentric	e (m) at the centre of gravity of the shased on the weight distribution accore (m) at the centre of gravity of the shaheight (m) , the value specified in the Table 4.3.2-5 .	ding to the loading condition to be co ip in the loading condition under con	onsidered may be used. sideration	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 A	Amendment 2))
--	---------------

Amended				Original		Remarks		
Part 2-10 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT TANKS OF TYPE C)				Part 2-10 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT TANKS OF TYPE C)			ED	
Chapter 4 LOADS				Chapter 4 LOADS				
4.3 Loads to be Considered in Strength of Primary Supporting Structures			4.3 Loads to be Considered in Strength of Primary Supporting Structures			nary		
4.3.2 Ma	4.3.2 Maximum Load Condition				4.3.2 Maximum Load Condition			
For the pressure and t	the hydrodyna	s of double amic press	hull, the hydrostatic are at the equivalent are to be considered.	For th pressure and	the hydrodynami	f double hull, the hydros ic pressure at the equiv 4.3.2-2. are to be conside	alent	
		Table 4.	3.2-2 External and Inte	ernal Pressure to	be Considered		Amendment (8)	
		$P_{DB}(kN/m^2)^{(1)(2)}$			$P_{DS}(kN/m^2)^{(1)}$ (2)		Assessments for double hull Structures	
	Double bottom	S1(<u>3)</u>	$P_{exs} + P_{exw}$		$P_{exs} + P_{exs}$	xw		
		<i>S</i> 2	$P_{exs} + P_{exw}$	$P_{exs} + P_{exw}$		xw	See the remark of amended-original	
Pe	Notes: P_{exs} , P_{exw} : Hydrostatic and Hydrodynamic pressure (kN/m^2) act on bottom shell in case of P_{DB} . Those values act on side shell in case of P_{DS} . Each value is calculated in accordance with 4.6.2.4, Part 1.							
Tail(1) Load calculation points for calculating each component of loads such as P_{exs} are to be in accordance with 7.3.1.5, Part 1 for all loading conditions.4 ,(2) When calculating loads, $T_{LC} = T_{SC}$. (3) P_{exw} is to be not less than the value of P_{exw} for HM-2 at x_G , which is the X coordinate (m) at the centre of gravity of the ship.4								

(Amendment related to Part C of the Rules for Surv	y and Construction of Steel Ships (2024 Amendment 2))
--	---

Amended	Original	Remarks
EFFECTIVE DATE A		
contract for construction is before the effective date.	, the current requirements apply to ships for which the date of endments to the Amendments may apply to ships for which the	

