Correction of Editorial Errors related to Materials and Welding

Object of Amendment

Rules for the Survey and Construction of Steel Ships Parts K and M Guidance for the Survey and Construction of Steel Ships Part K Guidance for the Approval and Type Approval of Materials and Equipment for Marine Use

Reason for Amendment

Requirements related to steel castings, steel forgings and the approval of associated welding procedures are respectively stipulated in Chapters 5 and 6 of Part K and Chapter 4 of Part M of the Rules for the Survey and Construction of Steel Ships.

Some of these requirements contained editorial errors with respect to things such as examples of standard values corresponding to the required tensile strength of steel castings, the acceptance criteria for Charpy impact testing, the relaxation requirements for steel forgings, and the number of specimens to be taken for the approval tests for welding procedures, etc. or in other ways differed from actual practice.

Accordingly, relevant requirements are amended so that they reflect actual practice.

Outline of Amendment

The main contents of this amendment are as follows:

- (1) Amends indication examples for values corresponding to the required tensile strength of steel castings to so that they are expressed in SI units.
- (2) Clarifies the acceptance criteria for Charpy impact testing.
- (3) Clarifies the relaxation requirements and references related to steel forgings.
- (4) Amends the number of specimens to be sampled for the fracture tests of fillet welded joints conducted during approval tests for welding procedures from two specimens to one.

Effective Date and Application

Effective date of this amendment is 1 January 2026.

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance.

ID:DD25-03

Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part K MATERIALS Chapter 5 CASTINGS	Part K MATERIALS Chapter 5 CASTINGS	
5.1 Steel Castings	5.1 Steel Castings	
5.1.6 Mechanical Properties	5.1.6 Mechanical Properties	

		Amend	ed				Original		Remarks
			Table K:	5.2 Mechanic	al Properties o	f Steel Castin	g		
Kiı	Kind Grade (4) Tensile strength_(1) Yield point or proof stress		Elongation $(L = 5.65 \sqrt{A})$ $(\%)$	Reduction of area (%)	Charpy V-notel	h impact test (2)			
			(N/mm^2)	(N/mm ²)			Test temperature (°C)	Minimum average energy (5) (J)	
		KSC400	400 min.	200 min.	25 min.	40 min.			
		KSC440	440 min.	220 min.	22 min.	30 min.			
Steel	Carbon	KSC480	480 min.	240 min.	20 min.	27 min.			
castings	steel	KSC520	520 min.	260 min.	18 min.	25 min.			
not castings	castings	KSC560	560 min.	300 min.	15 min.	20 min.	477 (3)		
intended		KSC600	600 min.	320 min.	13 min.	20 min.	$AT^{(3)}$		
for		KSCA550	550 min.	340 min.	16 min.	35 min.			
welding	Alloy	KSCA600	600 min.	400 min.	16 min.	35 min.			
	steel	KSCA650	650 min.	450 min.	14 min.	32 min.			
	castings	KSCA700	700 min.	540 min.	12 min.	28 min.		27	
		KSC400W	400 min.	200 min.	25 min.	40 min.		27	
	G 1	KSC440W	440 min.	220 min.	22 min.	30 min.			
G. 1	Carbon steel	KSC480W	480 min.	240 min.	20 min.	27 min.			
Steel castings	castings	KSC520W	520 min.	260 min.	18 min.	25 min.			
intended	castings	KSC560W	560 min.	300 min.	15 min.	20 min.	0		
		KSC600W	600 min.	320 min.	13 min.	20 min.	U		
welding	for relding Alloy steel	KSCA550W	550 min.	355 min.	18 min.	30 min.			
8		KSCA600W	600 min.	400 min.	16 min.	30 min.			
	castings	KSCA650W	650 min.	450 min.	14 min.	30 min.			
	340041160	KSCA700W	700 min.	540 min.	12 min.	28 min.			

- (1) A tensile strength range of 150 N/mm² may additionally be specified.
- (2) Special consideration may be given to alternative requirements for Charpy V-notch impact tests, depending on design and application, and subject to Society approval.
- (3) AT refers to the ambient temperature specified in ISO 148-1:2016 (i.e. 23 °C \pm 5 °C).
- (4) For steel castings intended for welded construction, "W" is to be suffixed to their respective grade markings in accordance with 5.1.4-2.
- (5) When the absorbed energy of two or more test specimens among a set of test specimens is less in value than the specified minimum mean absorbed energy or when the absorbed energy of a single test specimens is less in value than 70 % of the specified minimum mean absorbed energy, the test is considered to be failed.

Adds acceptance criteria for Charpy impact test (Same as in Remark (3) of Table K3.4)

Amended	Original	Remarks
5.1.12 Marking* 1 Steel castings which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with 1.5.1. For steel castings to which 5.1.6-2 have been applied, the value corresponding to the required tensile strength employed is to be used to the grade mark. (e.g. Where the required tensile strength employed is 430 N/mm², "KSC430" is to be indicated) (Same)	 5.1.12 Marking* 1 Steel castings which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with the requirements in 1.5.1. For steel castings to which the requirements given in 5.1.6-2 have been applied, the value corresponding to the required tensile strength employed is to be used to the grade mark. (ex. Where the required tensile strength employed is 430 N/mm², "KSC44" is to be indicated) 2 The grade of material and the manufacturer's name or trade mark are to be cast stamped or marked by some other appropriate method on all cast steels. In addition, cast number and test number are to be stamped or marked by some other appropriate method on all cast steels greater than 250 kg in weight. The Society's brand indicating satisfactory compliance with the Rule requirements is to be stamped on all cast steels in the neighbourhood of the above mentioned marks. 	Changes to SI units

	Requirements Comparison	Table (Correct			
	mended		Origi		Remarks
Chapter 6	STEEL FORGINGS	Ci	hapter 6 ST	EEL FORGINGS	
6.1 Steel Forgings 6.1.2 Manufacturing	Process*		l Forgings Manufacturing Pro	ocess*	
William Manufacturing				occus.	
		1 Forging Ratio	F : (2)	7	
	Туре	Dimension (1) $L > D$	Forging ratio (2) $S = 3$	-	
	Forgings made from ingots or from	L>D	3=3		
	forged blooms or billets	$L \leq D$	S=1.5		
	Forgings made from rolled products	L- <u>≤></u> D	S=4		
	rorgings made from roned products	L→ <u>≤</u> D	S=2		Corrects typo errors to
	Forgings made by upsetting (3)	_	U=1/3		align with the Rules for Japanese-flagged ships.
	Rolled bars	_	S= <u>6</u> 3		
	products. (2) Forging ratio is to be of $S = \frac{A}{a}$, $U = \frac{1}{L_i / L_f}$ where: $A : \text{Mean sections}$ $a : \text{Sectional area}$ $L_i : \text{Length before}$ $L_f : \text{Length after } U$ (3) In the case of an initial	calculated by the follow all area of original ingot a of the portion after for a upsetting (m) upsetting (m)	of (m^2) rging (m^2) set $S=1.5$, the forging ratio		

Amended	Original	Remarks
6.1.4 Chemical Composition (Same) (Same) 3 For steel forgings for rudder stocks and pintles, chemical composition is to be of a weldable quality. In this case, "W" is to be suffixed to the markings.	 6.1.4 Chemical Composition 1 Steel forgings are to have the chemical composition given in Table K6.2(a) and Table K6.3(b). 2 For steel forgings intended for welded constructions, "W" is to be suffixed to their respective grade markings (e.g. KSF440W and KSFA600W-H). 3 For steel forgings for rudder stocks and pintles, chemical composition is to be of a weldable quality. In cases where high strength carbon steel forgings are used, -2 above may be relaxed subject to approval by the Society. In this case, "(W)" is to be suffixed to the markings. 	Amends reference (Transfer to Remarks in Table K6.2(a) and K6.2(b))
(Same)	4 Steel forgings may be added with Al, Nb or V element for greater grain refining of the metal crystal.	
(Same)	5 The manufacturer is to make an analysis of each melt in ladles (multiple heats tapped into a common ladle are considered as one heat.) and the results are to be reported to the surveyor.	

	Amended								Origina	ıl		Remarks
	Table	K6.2(a)	Chemi	cal Com	positio	n of Ma	chinery	Steel Fo	orgings			
					C	hemical (Compositio	on (%) ⁽¹⁾				
K	ind	С	Si	Mn	Р	S	Cr (2)	Mo ⁽²⁾	Ni ⁽²⁾	Cu ⁽²⁾	Total residual elements	Deletes relaxation
Steel forgings	Carbon steel forgings	0.65 max. ⁽⁴⁾	0.45 max.	0.30~ 1.50	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	0.85 max.	requirement for the carbon content of carbo
not intended for welding	Alloy steel forgings	0.45 max.	0.45 max.	0.30~ 1.00	0.035 max.	0.035 max.	0.40 min. ⁽³⁾	0.15 min. ⁽³⁾	0.40 min. ⁽³⁾	0.30 max.	_	steel forgings.
Steel forgings	Carbon steel forgings	0.23 max. ⁽⁴⁾	0.45 max.	0.30~ 1.50	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	0.85 max.	
intended for welding	Alloy steel forgings (5)	0.25 max.	0.45 max.	0.30~ 1.00	0.035 max.	0.035 max.	0.40 min. ⁽³⁾	0.15 min. ⁽³⁾	0.40 min. ⁽³⁾	0.30 max.	-	
Notes: (1) (2) (3) (4) (5)	Where other elem Elements conside be intentionally a One or more of th Carbon content m The chemical con	ered to be red dded to the ne elements nay be incre	sidual ele steel. The is to com eased in ca	ments exce contents of ply with the ses where	pt in case of residual e minimus the carbon	s where a elements m content n equivale	minimum are to be of C_{eq} . sp	value is ind lescribed in ecified in 1	dicated. Ren the test ren.5.2-2(6) i	sidual elessults.		

menara or	Amended		s Com	parisor	1 1aule	(Con	ection	Of Ear			cialed to ivia	iciais	and Welding)	
			(1.) (1	1.0	<u> </u>	4: C	I I 11 C4	1 E:	Origin	aı			Remarks	
	1a	ble K6.2	(b) Che	mical C				eel Forgi	ngs					
					(Chemical (Compositi T	on (%) (1)	1	1				
K	ind	С	Si	Mn	P	S	Cr (2)	Mo ⁽²⁾	Ni ⁽²⁾	Cu (2)	Total residual elements		District	^:
Steel forgings	Carbon steel forgings	0.65 max. ⁽⁴⁾	0.45 max.	0.30~ 1.50	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	0.85 max.		requirement fo	
not intended for welding	Alloy steel forgings (5)	0.45 max. ⁽⁶⁾	0.45 max.	0.30~ 1.00 ⁽⁶⁾	0.030 max.	0.030 max.	0.40~ 3.50 (3)(6)	0.15~ 0.70 ⁽³⁾⁽⁶⁾	0.40~ 3.50 (3)(6)	0.30 max.	_		carbon content of steel forgings.	carbon
Steel forgings	Carbon steel forgings	0.23 max. ⁽⁴⁾	0.45 max.	0.30~ 1.50	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	0.85 max.			
intended for welding	Alloy steel forgings (5)	0.25 max. ⁽⁶⁾	0.45 max.	0.30~ 1.00 ⁽⁶⁾	0.035 max.	0.035 max.	0.40 min. (3)(6)	0.15 min. ⁽³⁾⁽⁶⁾	0.40 min. (3)(6)	0.30 max.	-			
Notes: (1) (2) (3) (4) (5) (6)	Where other elem Elements consider be intentionally a One or more of the Carbon content in where high strengequivalent (<i>Ceq</i>) in of " <i>W</i> ". The chemical core Specification is to	ered to be readded to the he elements hay be incregth carbon may be relamposition in	esidual eler e steel. The s is to comp eased in cas steel forgi xed subject	ments exce contents of ply with the ses where the ngs for ruck to approve	ept in case of residual e minimu the carbon dder stock val by the	s where a elements m content equivaler s and pin Society. In	minimum are to be . In the case (C_{eq}) specifies are us in this case (C_{eq}) is a deemed (C_{eq}) .	a value is indidescribed in 1.5 sed, limits on the control of the	the test ro 5.2-2(6) is f the carbo be suffix	esidual ele esults. s less than on content ed to the n	0.41 %. In cases and the carbon		Transfers the rel requirements from 3	

		Amend		2 2 21117 3112		(22			Origin				Remarks
		Ta	ble K6.3(a)	Mechanical	Propert	ies of N	lachine	ery Ste	el Forgings				
Kin	d	Grade (78)	Tensile strength (1)	Yield point or proof stress	5.65	$ ion (L = \sqrt{A}) $ $ 26) $	ar	etion of rea	Brinell hardness ⁽²⁾ HBW	Charpy V-note	ch impact	test ^(6<u>7</u>)	
			(N/mm ²)	(N/mm ²)	L	T	L	T		Test temperature (°C)	averag (J)	imum e energy	
		KSF400-M	400 min.	200 min.	26 min.	19 min.	50 min.	35 min.	110~150		L	T	
		KSF440-M	440 min.	220 min.	24 min.	18 min.	50 min.	35 min.	125~160				
		KSF480-M	480 min.	240 min.	22 min.	16 min.	45 min.	30 min.	135~175				
		KSF520-M	520 min.	260 min.	21 min.	15 min.	45 min.	30 min.	150~185				
	Carbon steel	KSF560-M	560 min.	280 min.	20 min.	14 min.	40 min.	27 min.	160~200				
	forgings	KSF600-M	600 min.	300 min.	18 min.	13 min.	40 min.	27 min.	175~215				
For machinery		KSF640-M	640 min.	320 min.	17 min.	12 min.	40 min.	27 min.	185~230	$AT^{(910)}$	27	18	
(<u>89</u>)		KSF680-M	680 min.	340 min.	16 min.	12 min.	35 min.	24 min.	200~240				
		KSF720-M	720 min.	360 min.	15 min.	11 min.	35 min.	24 min.	210~250				
		KSF760-M	760 min.	380 min.	14 min.	10 min.	35 min.	24 min.	225~265				
		KSFA600-M	600 min.	360 min.	18 min.	14 min.	50 min.	35 min.	175~215				
	Alloy steel	KSFA700-M	700 min.	420 min.	16 min.	12 min.	45 min.	30 min.	205~245				
	forgings	KSFA800-M	800 min.	480 min.	14 min.	10 min.	40 min.	27 min.	235~275				
		KSFA900-M	900 min.	630 min.	13 min.	9 min.	40 min.	27 min.	260~320				

Notes:	KSFA1000- M KSFA1100- M	1000 min.	700 min.	12	0 .						
	KSFA1100-	1100 min			8 min.	35	24	290~365			
		1100 min		min.		min.	min.				
	M	1100 mm.	770 min.	11	7 min.	35	24	320~385			
	IVI			min.		min.	min.				
(1) F	For steel forgings whose	specified min	imum tensile str	enoth is le	es than 90	00 N/mm	² a tensi	le strenoth rand	ge of 150 <i>N/mm</i> ² may	v additionally be	
	specified. For steel forging	-		-							
	be specified.	8 1			8		,	8	8	, ,	
(2) H	Hardness values are stand	dard and are gi	ven for informati	on purpos	es only.						
(3) 7	The letters " L " and " T " r	efer to longitud	dinal and tangent	ial respect	ively and	indicate 1	the direct	ion in which th	e specimen is to be ta	aken with respect	
	to the product.										
	When the absorbed energ		-	_		-			-		Adds acceptance criteria
_	energy or when the absor	bed energy of	a single test speci	imens is le	ss in value	e than 70	% of the	specified minii	num mean absorbed	energy, the test is	for Charpy impact test
_	considered to be failed.	. 10 :	. 1. 1	.1	1 1	1' 1	1.	1 14	1 1 14	1	(Same as in Remark (3)
	The requirement for carb					_	·-	-	-	-	of Table K3.4)
	The requirement for low mechanical properties are			e to those	quenchea	and tem	pered. In	cases where th	ey are norman <u>s</u> ed and	a temperea, their	
	Special consideration ma Society approval.	y be given to a	lternative require	ements for	Charpy V	-notch in	npact test	, depending on	design and application	on, and subject to	
(7 <u>8</u>) F	For steel forgings comply	ying with 6.1.4	-2, "W" is to be s	uffixed to	their respe	ective gra	ade mark	ings.			
(<u>89</u>) F	For steel forgings comply	ying with the ta	ble, "- M " is to be	e suffixed	to their res	spective ;	grade ma	rkings (e.g. KSI	F400-M and KSFA600	0W-M)	
(9 10) A	AT refers to the ambient t	temperature spe	ecified in ISO 14	8-1:2016 (i.e. 23 °C	± 5 °C).					

Kind	Grad	ade ^(6<u>7</u>)	Table K6 Tensile strength (1)	Yield point or proof	anical Proper		Steel Forg	ings				
Kind	Grad	ade (67)			Elongation (L		-					
				stress		(%)		on of area	Charpy V-notel	harpy V-notch impact test (56)		
			(N/mm ²)	(N/mm ²)	L	T	L	T	Test temperature (°C)	Mini aver energy	rage	
	KSF4	7400-H	400 min.	200 min.	26 min.	19 min.	50 min.	35 min.				
	KSF4	F440-H	440 min.	220 min.	24 min.	18 min.	50 min.	35 min.				
	arbon KSF4	7480-H	480 min.	240 min.	22 min.	16 min.	45 min.	30 min.				
		7520-H	520 min.	260 min.	21 min.	15 min.	45 min.	30 min.				
For hull (78)	KSF	7560-H	560 min.	280 min.	20 min.	14 min.	40 min.	27 min.	0	27	18	
	KSF	F600-H	600 min.	300 min.	18 min.	13 min.	40 min.	27 min.				
A.1	lloy KSFA	A550-H	550 min.	350 min.	20 min.	14 min.	50 min.	35 min.				
ste	-	74600-H	600 min.	400 min.	18 min.	13 min.	50 min.	35 min.				
lorg		7A650-H	650 min.	450 min.	17 min.	12 min.	50 min.	35 min.				

	Amended	Original	Remarks
(3) (3) (4) (5) (6) (7)	For steel forgings whose specified minimum tensile strength specified. For steel forgings whose specified minimum tensile specified. The letters "L" and "T" refer to longitudinal and tangential resproduct. When the absorbed energy of two or more test specimens amorenergy or when the absorbed energy of a single test specimens considered to be failed. The requirement for carbon steel forgings is applicable to those of the requirement for low alloy steel forgings is applicable to the mechanical properties are subject to Society approval. Special consideration may be given to alternative requirements Society approval. For steel forgings complying with 6.1.4-2, "W" is to be suffixed.	is less than 600 <i>N/mm</i> ² , a tensile strength range of 120 <i>N/mm</i> ² may additionally be trength is 600 <i>N/mm</i> ² or more, a tensile strength range of 150 <i>N/mm</i> ² may additionally sectively and indicate the direction in which the specimen is taken with respect to the angle a set of test specimens is less in value than the specified minimum mean absorbed is less in value than 70 % of the specified minimum mean absorbed energy, the test is annealed, normalised, normalised and tempered, or quench and tempered. The cases where they are normalised and tempered, their for Charpy V-notch impact test, depending on design and application, and subject to did to their respective grade markings. Seed to their respective grade markings (e.g. <i>KSF</i> 400- <i>H</i> and <i>KSF</i> 4600 <i>W-H</i>)	Adds acceptance criteria for Charpy impact test (Same as in Remark (3) of Table K3.4)

<u> </u>	tole (Correction of Editorial Errors related to Materials	- 0/
Amended	Original	Remarks
Part M WELDING	Part M WELDING	
Chapter 4 WELDING PROCEDURE AND RELATED SPECIFICATIONS	Chapter 4 WELDING PROCEDURE AND RELATED SPECIFICATIONS	
4.3 Tests for Fillet Weld Joints	4.3 Tests for Fillet Weld Joints	
4.3.7 Fracture Tests 1 In cases where the test assembly is a plate, <u>a</u> test specimen <u>is</u> to be taken from the remainder of the test assembly after the macro-structure specimen has been removed. (Same) (Same)	 4.3.7 Fracture Tests 1 In cases where the test assembly is a plate, two (2) test specimens are to be taken from the remainder of the test assembly after the macro-structure specimen has been removed. 2 In cases where the test assembly is a pipe (or tube), an appropriate number of test specimens is to be taken from the remainder of the test assembly after the macro-structure specimen has been removed. 3 The test assemblies are to be broken by pressing as shown in Fig. M4.6, without cracks, poor penetrations, blow holes and injurious defects in the fractured surface. Where, however, the sum of lengths having blow holes (include poor penetrations), except at both ends of the specimen (only for plate test assemblies), is not greater than 10% of the total welded length, the test may be regarded as satisfactory. 	In the case of fillet welding, the weld line is one side, so the specimen is one.

Amended	Original	Remarks
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part K MATERIALS	Part K MATERIALS	
K6 STEEL FORGINGS	K6 STEEL FORGINGS	
K6.1 Steel Forgings	K6.1 Steel Forgings	
K6.1.2 Manufacturing Process (Same)	K6.1.2 Manufacturing Process 1 The wording "unless otherwise deemed appropriate by the Society" in 6.1.2-4(4), Part K of the Rules means the requirements may be suitably modified at the discretion of the surveyor according to the size or form, or the use for which they are intended, except for compression deformations of steel ingots or forging materials in the longitudinal direction (i.e. upsetting).	
2 In relation to 6.1.2-6, Part K of the Rules, where gas workings are being carried out on the parts subjected to high stress such as mass removal of crankshaft, the data related to the processes (including pre-heating) and change of material due to working are to be submitted approval of the Society.	2 In relation to 6.1.2-7, Part K of the Rules, where gas workings are being carried out on the parts subjected to high stress such as mass removal of crankshaft, the data related to the processes (including pre-heating) and change of material due to working are to be submitted approval of the Society.	Amends reference

Amended	Original	Remarks
GUIDANCE FOR THE APPROVAL AND	GUIDANCE FOR THE APPROVAL AND	TOMATIO
TYPE APPROVAL OF MATERIALS AND	TYPE APPROVAL OF MATERIALS AND	
EQUIPMENT FOR MARINE USE	EQUIPMENT FOR MARINE USE	
EQUITMENT FOR MARINE USE	EQUITATENT FOR MARINE USE	
Part I GENERAL	Part I GENERAL	
Part 1 METALLIC MATERIALS	Part 1 METALLIC MATERIALS	
Chapter 3 APPROVAL OF MANUFACTURING PROCESS OF STEEL CASTINGS AND STEEL FORGINGS	Chapter 3 APPROVAL OF MANUFACTURING PROCESS OF STEEL CASTINGS AND STEEL FORGINGS	
3.1 General	3.1 General	
3.1.1 Scope	3.1.1 Scope	
(Same)	1 This chapter applies to the testing and inspection for	
	the approval of manufacturing castings and forgings (except	
	those of casting and forging equipment specified in Part L	
	of the Rules), specified in the provisions of Chapter 5 and	
	Chapter 6, Part K of the Rules for the Survey and	
	Construction of Steel Ships (hereinafter referred to as "the	
	Rules"), in accordance with the provisions of 1.2, Part K of the Rules.	
2 This chapter applies also to the case where the surface	2 This chapter applies also to the case where the surface	Amends reference
of steel castings and forgings are subjected to hardening	of steel castings and forgings are subjected to hardening	
process in accordance with the provisions of 5.1.2-4 and 6.1.2-	process in accordance with the provisions of 5.1.2-4 and 6.1.2-	
5, Part K of the Rules.	7, Part K of the Rules.	

Amended	Original	Remarks
(Same)	3 This chapter applies correspondingly to the testing and inspection for the approval of manufacturing process of casting and forging which being required approval by the Society in accordance with the requirements of 1.1.1-3, Part K of the Rules. 4 The requirements of this chapter correspondingly apply to tests and inspection for the approval of semi-finished products such as ingot, slab and billet for the steel forgings specified in preceding -1 through -3.	
EFFECTIVE DATE AND APPLICATION 1. The effective date of the amendments is 1 January 2026.		