Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment 1)

Object of Amendment

Rules for the Survey and Construction of Steel Ships Parts A and C Guidance for the Survey and Construction of Steel Ships Parts A and C Rules for High Speed Craft Rules for the Survey and Construction of Passenger Ships Rules for the Survey and Construction of Inland Waterway Ships

Reason for Amendment

Part C of the Rules and Guidance for the Survey and Construction of Steel Ships was revised comprehensively in July 2022, and there are plans to continuously review it with the aim of improving its practicality and usability based on various feedback from relevant industry members. Additionally, insights gained through research and development will be appropriately reflected in Part C to enhance safety and rationality.

Accordingly, relevant requirements are amended to reflect rule review results and research and development outcomes.

Outline of the Amendment

- (1) Specifies requirements for ships carrying heavy cargoes on their upper decks, and also provides for the new notation *Heavy Deck Carrier*.
- (2) Specifies requirements regarding the installation of attachments to shell plating.
- (3) Expands the application of requirements related to side frames to include multiple-deck ships and clarifies said requirements by ship type.
- (4) Revises requirements regarding section modulus at the upper parts of corrugated bulkheads.
- (5) Revises the coefficients that take into account strength reduction due to buckling.
- (6) Revises the reduction factors for double bottom stiffeners considering the effect of struts
- (7) Clarifies the loads to be used in buckling strength assessment of pillars
- (8) Specifies criteria when opting to assess stress concentration areas
- (9) Specifies strength assessment by cargo hold analysis for ships carrying liquefied gases in bulk (independent tanks of type C).
- (10) Clarifies some definitions and corrects typographical errors.

Effective Date and application

- 1. This amendment applies to ships for which the date of contract for construction is on or after 1 July 2026.
- 2. Notwithstanding the preceding 1, this draft amendment may apply, upon request, to ships for which the date of contract for construction is before the effective date.

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance.

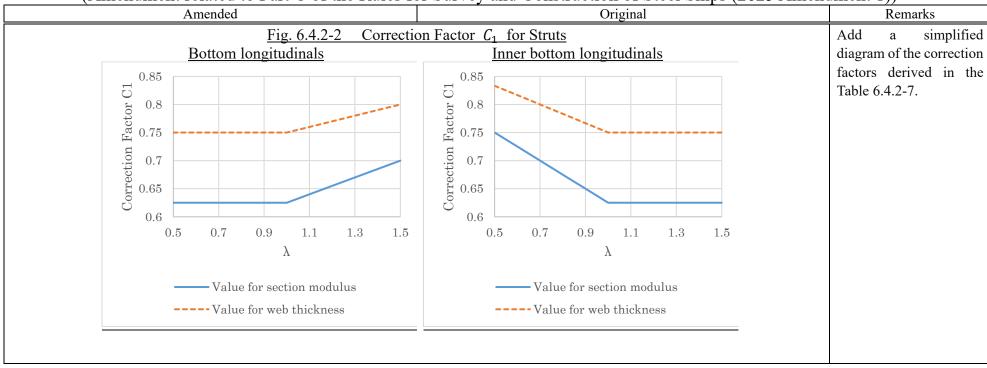
ID:DH25-01

	of Survey and Construction of Steel Ships (2023 Affiche	
Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
CONSTRUCTION OF STEEL SHITS	CONSTRUCTION OF STEEL SHITS	
Part A GENERAL RULES	Part A GENERAL RULES	
Chapter 1 GENERAL	Chapter 1 GENERAL	
Chapter 1 GEN (ETAILE	Chapter 1 GENERALE	
1.2 Class Notations	1.2 Class Notations	
1.2.4 Hull Construction and Equipment, etc.*	1.2.4 Hull Construction and Equipment, etc.*	
(Omitted)	(Omitted)	Amendment (1)
11 For ships intended for the carriage of heavy cargoes on	(Newly Added)	Specifies requirements
their upper decks complying with the provisions of 10.6, Part		for ships carrying heavy
2-5, Part C and having no cargo holds below the upper deck,		cargoes on upper deck,
the notation of "Heavy Deck Carrier" (abbreviated to HDCA)		and also provides for a
is affixed to the Classification Characters.		new notation Heavy
12 For ships intended for the carriage of unoccupied	11 For ships intended for the carriage of unoccupied	Deck Carrier.
motor vehicles without cargo, having multiple decks and	motor vehicles without cargo, having multiple decks and	Section numbers are
complying with the provisions of Part 2-6, Part C, the	complying with the provisions of Part 2-6, Part C, the	carried forward in the
notation of "Vehicles Carrier" (abbreviated to VC) is affixed	same way below -11.	
to the Classification Characters.	notation of "Vehicles Carrier" (abbreviated to VC) is affixed to the Classification Characters.	Same way below -11.
(Omitted)	(Omitted)	
(Onnice)	(Cilities)	

Amended	Original Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	Remarks
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIFS	
Part C HULL CONSTRUCTION AND	Part C HULL CONSTRUCTION AND	
EQUIPMENT	EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
Tatt I GENERAL HOLL REQUIREMENTS	Tatt I GENERAL HOLL REQUIREMENTS	
Chapter 3 STRUCTURAL DESIGN	Chapter 3 STRUCTURAL DESIGN	
PRINCIPLES	PRINCIPLES	
3.4 Structural Detail Principles	3.4 Structural Detail Principles	
200 200 200 200 200 200 200 200 200 200	over a construction production of the construction of the construc	
3.4.4 Shell Plating	2.4.4 Chall Disting	
3.4.4 Shell Plating	3.4.4 Shell Plating	
3.4.4.1 Local Reinforcement of Shell Plating	3.4.4.1 Local Reinforcement of Shell Plating	
All openings in the shell plating are to have well-	All openings in the shell plating are to have well-	
rounded corners and are to be reinforced as necessary. The	rounded corners and are to be reinforced as necessary. The	
reinforcement of openings is to be made in accordance with	reinforcement of openings is to be made in accordance with	
the following (1) to (3):	the following (1) to (3):	
(1) Openings in shell plating of 300 mm or more in size	(1) Openings in shell plating of 300 mm or more in size	
are to be reinforced by doubler or thicker plating.	are to be reinforced by doubler or thicker plating.	
(2) In the fore and aft peaks, suitable modifications may be made to the reinforcement of openings.	(2) In the fore and aft peaks, suitable modifications may be made to the reinforcement of openings.	
(3) The radius <i>R</i> at the corners of openings is to be at least	(3) The radius <i>R</i> at the corners of openings is to be at least	
100 mm.	100 mm.	

Amended	Original	Remarks
Alliciaca	Original	
2 4 2 2 Installation of A44 almost to Chall Distinct	(Nl Add - J)	Amendment (2)
3.4.2.2 Installation of Attachments to Shell Plating	(Newly Added)	Specifies requirements
Special consideration is to be given when attachments		regarding installation of
are welded to shell plating.		attachments on shell
		plating.
2.5 M; ; D ;	2.5 M; ; D ; 4	
3.5 Minimum Requirements	3.5 Minimum Requirements	
3.5.2 Slenderness Requirements	3.5.2 Slenderness Requirements	
1	1	Amendment (10)
3.5.2.2 Thickness of Various Structural Members	3.5.2.2 Thickness of Various Structural Members	Clarifies some
1 The thickness t (mm) of various structural members	1 The thickness t (mm) of various structural members	definitions and corrects
is to satisfy the following criteria:	is to satisfy the following criteria:	typographical errors.
	=	oppegrapment errers.
$t \ge \frac{b}{C} \sqrt{\frac{\sigma_Y}{235}}$	$t \ge \frac{b}{C} \sqrt{\frac{\sigma_Y}{235}}$	Definition of breadth of
b: For plating, b is to be taken as the plate breadth	b: For plating, b is to be taken as the plate breadth	face plate is clarified.
(mm)	(mm)	race place is claimed.
For webs, b is to be taken as the web depth	For webs, b is to be taken as the web depth	
(mm). However, where the stiffener is provided	(mm). However, where the stiffener is provided	
on the web, b may be taken as the maximum	on the web, b may be taken as the maximum	
breadth taking the stiffener into account.	breadth taking the stiffener into account.	
For face plates, b is to be taken as the maximum	For face plates, b is to be taken as the half	
distance from mid-thickness of the web to its face	breadth of the face plate (mm)	
edge (mm)	(````\	
For circular section pillars, b is to be taken as	For circular section pillars, b is to be taken as	
their mid-thickness radius (mm)	their mid-thickness radius (mm)	
C: Slenderness coefficient as specified in Table	C: Slenderness coefficient as specified in Table	
3.5.2-1	3.5.2-1	
(Omitted)	(Omitted)	
(()	

(11111	Amended		Buivey and co	Original	Remarks
Chapter 5					
5.2 Yield St	rength ling Strength		5.2 Yield Stre	ength ng Strength	
	Table 5.2.1-1 Wave and Still V	 Water Verti	cal Bending Mom	ents to be Considered	Amendment (10)
	Condition		M_S	M_w	Clarifies some
	Maximum load condition	Still wa	ater and wave vertical be	ending moments for the hogging and ses shown in 4.3.2.5	definitions and corrects typographical errors.
	Operation in harbor/sheltered water Harbour condition	M_{PT}	r_max or M _{PT_min}	0	Unifies the term "Harbour Condition".
	Table 5.2.1-2 Perm Condition Maximum load condit Operation in harbor/sheltered w	tion	Design load (S+D) (S)	SS σ_{perm} $\frac{\sigma_{perm}}{175/K}$ $\frac{149/K}{}$	
5.2.2 Shea	r Strength Table 5.2.2-1 Wave and	1 Still Wate		Strength be Considered	Change columns.
	Condition		$Q_s \frac{Q_w}{Q_w}$	$Q_w Q_{\overline{s}}$	
	Maximum load condition Still wat			wave vertical shear force for the cases shown in 4.3.2.5	
	Operation in harbor/sheltered water Harbour condition	Q_{PT_m}	$_{ax}$ or Q_{PT_min} θ	0 Q_{PT_max} or Q_{PT_min}	


Condition Maximum load condition Operation in harbor/sheltered water condition Table 5.2.2-3 Shear Force Condition Maximum load condition Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ Ca: Distribution coefficient, to be (1) At the aft end of the case (2) At the fore end of the case (3) At mid-length of the case (4) At the aft bulkhead of (5) At the fore bulkhead of (6) At other locations: To a: Coefficient taken as: $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ φ : Value obtained from the $\varphi = 1.38 + 1.55 \frac{\ell_0}{B_0}$	Permissible Vertica		
Maximum load condition Operation in harbor/sheltered water condition Table 5.2.2-3 Shear Force Condition Maximum load condition Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ C _d : Distribution coefficient, to be (1) At the aft end of the coefficient, and the coefficient of the coefficient (4) At the aft bulkhead of (5) At the fore bulkhead of (6) At other locations: To α : Coefficient taken as: $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ φ : Value obtained from the $\varphi = 1.38 + 1.55 \frac{\ell_0}{B_0}$		al Shear Stresses	
Table 5.2.2-3 Shear Force Condition Maximum load condition Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ $C_d: \text{Distribution coefficient, to b}$ (1) At the aft end of the compact of t	Design load	Permissible vertical shear stress $ au_{i-perm}$	
Table 5.2.2-3 Shear Force Condition Maximum load condition Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ C _d : Distribution coefficient, to be (1) At the aft end of the coefficient, and the coefficient of the coefficient of the coefficient of the coefficient of the coefficient taken as: $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ φ : Value obtained from the coefficient taken as: $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ $\alpha = \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$	(S+D)	110/k	
Condition Maximum load condition Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ $C_d: \text{Distribution coefficient, to b}$ (1) At the aft end of the composition of the	Harbour (S)	102/k	
Maximum load condition Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ $C_d: \text{Distribution coefficient, to b}$ $(1) \text{At the aft end of the coefficient}$ $(2) \text{At the fore end of the coefficient}$ $(3) \text{At mid-length of the coefficient}$ $(4) \text{At the aft bulkhead of}$ $(5) \text{At the fore bulkhead of}$ $(6) \text{At other locations: To}$ $\alpha: \text{Coefficient taken as:}$ $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ $\varphi: \text{Value obtained from the}$ $\varphi = 1.38 + 1.55 \frac{\ell_0}{B_0}$	modified Considerin	g Alternate Loading Condition	
Operation in harbor/sheltered water Harbour condition Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ $C_d: \text{Distribution coefficient, to b}$ $(1) \text{At the aft end of the composition}$ $(2) \text{At the fore end of the composition}$ $(3) \text{At mid-length of the composition}$ $(4) \text{At the aft bulkhead of }$ $(5) \text{At the fore bulkhead of }$ $(6) \text{At other locations: To }$ $\alpha: \text{Coefficient taken as:}$ $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ $\varphi: \text{Value obtained from the }$ $\varphi = 1.38 + 1.55 \frac{\ell_0}{B_0}$	Shear force $Q_{S_{\underline{-}m}}$ mo	dified considering alternate loading condition	
Where: $\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh} \right)$ $C_d: \text{Distribution coefficient, to b}$ $(1) \text{At the aft end of the co}$ $(2) \text{At the fore end of the co}$ $(3) \text{At mid-length of the co}$ $(4) \text{At the aft bulkhead of}$ $(5) \text{At the fore bulkhead of}$ $(6) \text{At other locations: To}$ $\alpha: \text{Coefficient taken as:}$ $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ $\varphi: \text{Value obtained from th}$ $\varphi = 1.38 + 1.55 \frac{\ell_0}{B_0}$	($Q_{SW_m} = Q_{SW} + \Delta Q_{mdf}$	
$\Delta Q_{mdf} = C_d \alpha \left(\frac{M}{B_H \ell_0} - \rho T_{LC,mh}\right)$ $C_d: \text{Distribution coefficient, to b}$ $(1) \text{At the aft end of the co}$ $(2) \text{At the fore end of the co}$ $(3) \text{At mid-length of the co}$ $(4) \text{At the aft bulkhead of}$ $(5) \text{At the fore bulkhead of}$ $(6) \text{At other locations: To}$ $\alpha: \text{Coefficient taken as:}$ $\alpha = g \frac{\ell_0 B_0}{2 + \varphi \frac{\ell_0}{B_0}}$ $\varphi: \text{Value obtained from th}$ $\varphi = 1.38 + 1.55 \frac{\ell_0}{B_0}$	$Q_{\mathcal{S}}$	$SW_{-m} = Q_{SW-p} + \Delta Q_{mdf}$	
	nsidered cargo hold except considered cargo hold except argo hold: $C_d = 0$ the aftmost cargo hold: C_d if the foremost cargo hold: C_d be determined by linear integrated from the considered transverse t water and fuel oil located under the bulkhead stool. C_d as specified in 4.6.	$C_d = 0$ erpolation from (1) to (5) above.	

	Amended			Original	1	Remarks
	$T_{LC,mh}$: Draught (m) measured vertically on the hull transverse section at the middle of the hold considered, from the moulded baseline to the waterline in the loading condition considered.					
Annex 5.1	EXTENT OF HIGH STEEL	TENSILE	An	nex 5.1 EXTENT OF HIC STEEL	GH TENSILE	
An1 Extent of	High Tensile Steel Use		An1	Extent of High Tensile Steel Use		
An1.2 Vertica	al Extent		An1	2 Vertical Extent		
	Ta	ble An1 Stresses a	t Baselin	e and Deck		
	Condition	Baseline		Deck		
	Seagoing	$\sigma_{bl} = \frac{ M_{SW} + M_{WV} }{I_{gr}}$	$z_n \times 10^5$	$\sigma_{dk} = \frac{ M_{SW} + M_{WV} }{I_{gr}} V_D \times 10^5$		
	Operation in harbor/sheltered- water Harbour	$\sigma_{bl} = \frac{\left M_{SW-p} \right }{I_{gr}} z_n$	× 10 ⁵	$\sigma_{dk} = \frac{\left M_{SW-p} \right }{I_{gr}} V_D \times 10^5$		Unifies the term "Harbour Condition"
	<i>V_D</i> : Refer to 5.2.1.2]	
					_	

(Amendment related to Part C of the Rules for	or Survey and Construction of Steel Ships (2025 Amend	dment 1))
Amended	Original	Remarks
Annex 5.4 HULL GIRDER ULTIMATE STRENGTH	Annex 5.4 HULL GIRDER ULTIMATE STRENGTH	
An2.Incremental-iterative Method	An2. Incremental-iterative Method	
An2.3 Load-end Shortening Curves	An2.3 Load-end Shortening Curves	Amendment (5)
An2.3.8 Plate Buckling The equation describing the load-end shortening curve $\sigma_{CR5} - \epsilon$ for the buckling of transversely stiffened panels composing the hull girder transverse section is to be obtained from the following formula: $\sigma_{CR5} = \min \left\{ \frac{\sigma_{T}}{\sigma_{T}} \left[\frac{s}{l} \left(\frac{2.25}{\beta_{E_{-}1}} - \frac{1.25}{\beta_{E_{-}1}^{2}} \right) + \left(1 - \frac{s}{l} \right) \left(\frac{0.06}{\beta_{E}} + \frac{0.6}{\beta_{E}^{2}} \right) \right] \right\}$	An2.3.8 Plate Buckling The equation describing the load-end shortening curve $\sigma_{CR5} - \epsilon$ for the buckling of transversely stiffened panels composing the hull girder transverse section is to be obtained from the following formula: $\sigma_{CR5} = \min \left\{ \sigma_{Yp} \Phi \left[\frac{s}{l} \left(\frac{2.25}{\beta_E} - \frac{1.25}{\beta_E^2} \right) + \left(1 - \frac{s}{l} \right) \left(\frac{0.06}{\beta_E} + \frac{0.6}{\beta_E^2} \right) \right] \right\}$	Revises the coefficients that take into account strength reduction due to buckling. Revises the formula because it could result in
$ Φ$: Edge function as specified in An2.3.3. $ β_{E_{-1}} = \max(β_E, 1.25) $ $ β_E = \frac{s}{t} \sqrt{\frac{εσ_{\gamma p}}{E}} $ s: Plate breadth (mm) , taken as the spacing between the stiffeners. $ l$: Length (mm) of the longer side of the plate.	$ Φ$: Edge function as specified in An2.3.3. $ β_E = \frac{s}{t} \sqrt{\frac{εσ_{Yp}}{E}} $ s: Plate breadth (mm) , taken as the spacing between the stiffeners. l: Length (mm) of the longer side of the plate.	unreasonable values such as negative values depending on the values of β_E and s/l .

Amended	Original Original	Remarks
Chapter 6 LOCAL STRENGTH	Chapter 6 LOCAL STRENGTH	
6.4 Stiffeners	6.4 Stiffeners	
6.4.1 General	6.4.1 General	
 6.4.1.1 Application 1 Stiffeners subject to lateral loads are to be in accordance with the requirements in 6.4.2. 2 Side frames within the cargo region are to be in accordance with the following (1) to (3) (See Table 6.4.1-1). (1) The scantlings of side frames in single-deck ships are to be in accordance with 6.4.3.2 instead of -1 above. However, for side frames abaft of collision bulkheads, the scantlings are also to be in accordance with 6.4.3.4. (2) The scantlings of side frames in multiple-deck ships are to be in accordance with -1 above or 6.4.3.2. 	 6.4.1.1 Application 1 Stiffeners subject to lateral loads are to be in accordance with the requirements in 6.4.2. 2 Side frames within the cargo region are to be in accordance with the following (1) to (3) (See Table 6.4.1-1). (1) The scantlings of side frames in single-deck ships are to be in accordance with 6.4.3.2 instead of -1 above. However, for side frames abaft of collision bulkheads, the scantlings are also to be in accordance with 6.4.3.4. (Newly Added) 	Amendment (3) Clarifies the requirements related to side frames Specifies applications for side frames in multiple-deck ships (not only for the lowest tier side frames).
 (3) The scantlings of side frames supporting deck transverses (except cantilever beams) for longitudinal framing systems are to be in accordance with 6.4.3.3 in addition to (1) or (2) above. (4) The scantlings of side frames supporting cantilever beams are to be in accordance with 7.2.3 to 7.2.6, notwithstanding (1) or (2) above. The bending moments and shear forces to be considered in applying 7.2.3 to 7.2.5 are to be in accordance with 7.2.2.2. 	 (2) The scantlings of side frames supporting deck transverses (except cantilever beams) for longitudinal framing systems are to be in accordance with 6.4.3.3 in addition to -1 above. (3) The scantlings of side frames supporting cantilever beams are to be in accordance with 7.2.3 to 7.2.6 in addition to -1 above. The bending moments and shear forces to be considered in applying 7.2.3 to 7.2.5 are to be in accordance with 7.2.2.1. 	Specifies that side frames supporting cantilever beams are treated as web frames and to be in accordance with Chapter 7, not with Chapter 6.

(7 HHCH	arric	Amended	or are or the		Burvey	and Cont	Orig		Snips (2025 Amen	Remarks
		-	Table	6.4.1-1	Side Fram	es				Clarifies Table 6.4.1-1 in
			Side Frames			Applied Requ	irements			accordance with 6.4.1.1.
			nes of single-deck ships			6.4.3.2 and				
			nes <u>of multiple-deck ship</u>	_		6.4.2 or 6				
			es supporting deck tran- les supporting cantilever		6.4	.3.3 in additio				
6.4.2 Stiffend	ers	<u></u> Side Ham			6.4.2	Stiffener	'S			A mandon ant (C)
	ъ.		Table 6.4.2-7	1	1	†	I		⊐	Amendment (6) Revise the reduction
	Rati		of inertia of stiffeners $\frac{1}{2}$ /min $\frac{1}{2}$ /min $\frac{1}{2}$	≥1.0 <1.2	≥1.2 <1.4	≥ 1.4 < 1.6	≥ 1.6 < 1.8	<u>≥ 1.8</u>		factor for double bottom
		Bottom	Value for section modulus (6.4.2.1)	0.625	0.670	0.700	0.725	0.745		stiffeners considering the effect of struts.
	C	longitudinals	Value for web thickness (6.4.2.2)	0.750	0.775	0.800	0.815	0.825		Change the correction
	€	Inner bottom	Value for section modulus (6.4.2.1)	0.625	0.670	0.690	0.720	0.740		factor so that it is reasonable even when λ
		longitudinals	Value for web- thickness (6.4.2.2)	0.750	0.780	0.795	0.810	0.825		is less than 1.0.
	_		<u>Table 6.4.2-7</u>	Correction	n Factor C	for Stru	t <u>s</u>			
			<u>C</u> ₁	Bottom long		Inner	bottom longitu	<u>ıdinals</u>		
		Value for section	n modulus (6.4.2.1)		$\frac{1}{10}\lambda + \frac{19}{40}$		$-\frac{1}{4}\lambda + \frac{7}{8}$			
		Value for web th	ickness (6.4.2.2)	1 10	$\frac{\lambda + \frac{13}{20}}{1}$		$-\frac{1}{6}\lambda + \frac{11}{12}$			
			n modulus (6.4.2.1) is to							
		Value for web th	ickness (6.4.2.2) is to be	e not less than	n 0.75.					

(Amendment related to Part C of the Rules for	or Survey and Construction of Steel Ships (2025 Amend	lment 1))
Amended	Original	Remarks
6.4.3 Side Frames	6.4.3 Side Frames	
The scantlings of the side frames are to be in accordance with the following (1) and (2): (1) Bending strength (a) The section modulus is to be not less than the value obtained from the following formula: $Z = C_{Safety} \frac{M_1}{\sigma_Y} \times 10^3 (cm^3)$ $C_{safety} : \text{Safety factor taken as } 1.0.$ $M_1 : \text{Bending moment } (kN-m) \text{ due to side loads according to the following formula:}$ $M_1 = f_{load}f_{bc}f_t \left(\frac{P_{exsl} + f_p P_{exwl}}{20} + \frac{P_{exsu} + f_p P_{exwu}}{30}\right) s \ell_{1bdg}^2 \times 10^{-3}$ $f_{load} : \text{ Coefficient corresponding to loading conditions, to be taken as } 1.0$ $f_{bc} : \text{ Coefficient corresponding to boundary conditions at ends of side frames, to be taken as the following i) or ii)} i) Side frames in single-deck ships and the lowest tier side frames in multiple-deck ships: f_{bc} = 0.8 ii) Side frames other than i) above: f_{bc} = \frac{1.0}{1.0} f_t : Coefficient considering effects of brackets provided between side frames and bilge hopper tanks/top side tanks. If both ends are supported by bilge hopper tanks and top side$	6.4.3.2 Side Frames in Single-Deck Ships The scantlings of the side frames in single deck ships are to be in accordance with the following (1) and (2): (1) Bending strength The section modulus is to be not less than the value obtained from the following formula: $Z = C_{Safety} \frac{M_1 + M_2}{\sigma_Y} \times 10^3 (cm^3)$ $C_{Safety} : \text{Safety factor taken as 1.0.}$ $M_1 : \text{Bending moment } (kN-m) \text{ due to side loads according to the following formula:}$ $M_1 = f_{load}f_{bc}f_t \left(\frac{P_{exsl} + f_p P_{exwl}}{20} + \frac{P_{exsw} + f_p P_{exww}}{30}\right) s \ell_{1bdg}^2 \times 10^{-3}$ $f_{load}, f_{bc} : Coefficient corresponding to loading conditions and boundary conditions at ends of side frames as specified in Table 6.4.3-1 and Table 6.4.3-2. If multiple loading conditions are applicable in loading conditions specified in Table 6.4.3-1 and Table 6.4.3-2, evaluations are to be carried out with all applicable loading condition. f_t : \text{ Coefficient considering effects of brackets provided between side frames and bilge hopper tanks/top side tanks. If both ends are supported by bilge hopper tanks and top side$	Amendment (3) Clarifies the requirements related to side frames Deletes "in single deck ships" to apply not only to single-deck ships. In the current Rules, the values of each coefficient are specified corresponding to loading conditions and existence of web frames. In this amendment, to clarify the requirements, the values based on full loading condition are only specified in Part 1, and those values are to be incorporated into Part 2 corresponding to type of ship.

Amended	Original Original	Remarks
		Remarks
tanks, 0.8. If either end is supported, 0.9.	tanks, 0.8. If either end is supported, 0.9. Otherwise, 1.0.	
Otherwise, 1.0. (See Table 6.4.3-1)		
ℓ : Full length (m) of the side frame as specified in Table 6.4.3.1	ℓ : Full length (m) of the side frame as specified	
in <u>Table 6.4.3-1</u> .	in <u>Fig. 6.4.3-2</u> .	
f_p : Coefficient, to be taken 0.9.	f_p : Coefficient, to be taken 0.9.	A 1'
ℓ_{1bdg} : Effective bending span (m) of the side	ℓ_{1bdg} : Effective bending span (m) of the side	Aligns the definition of
frame, to be in accordance with the	frame. Where a bracket is provided, the	effective bending span to
following i) or ii)	end of the effective bending span is to be	that in Chapter 3.
i) Where neither bilge hopper tanks nor	taken to the position where the depth of	In addition, clarifies the
topside tanks are provided, and	the side frame and the bracket is equal to	requirements related to
brackets are provided at the end of the	$2h_{w}$ (See Fig. 6.4.3-2).	span reduction.
side frames, the end of the effective		
bending span is to be taken to the		
position where the depth of the side		
frame and the bracket is equal to		
1.5h _w (See Table 6.4.3-1).		
ii) Where side frames and bilge hopper		
tanks or top side tanks are combined,		
the end of the effective bending span is		
to be taken to the end of full length of		
the side frame ℓ (See Table 6.4.3-1).		
However, when the value of f_t is set		
to 1.0, the end of the effective bending		
span may be taken to the position		
where the depth of the side frame and		
the bracket is equal to $1.5h_w$		M_2 and F_2 are
h_w : Web depth of side frames		organised in Table 6.4.3-
s: Spacing (mm) of side frames	s: Spacing (mm) of side frames	2.
P_{exsl} : Hydro static pressure P_{exs}	P_{exsl} : Hydro static pressure P_{exs}	
specified in 4.4.2.2-1, to be calculated at the	specified in 4.4.2.2-1, to be calculated at the	
lower end of full length ℓ of the side frame	lower end of full length ℓ of the side frame	
P_{exsu} : Hydro static pressure P_{exs}	P_{exsu} : Hydro static pressure P_{exs}	

Amended	Original Original	Remarks
specified in 4.4.2.2-1, to be calculated at the	specified in 4.4.2.2-1, to be calculated at the	TOHIUING
upper end of full length ℓ of the side frame	upper end of full length ℓ of the side frame	
P_{exwl} : Dynamic pressure P_{exw} specified		
1 · · · · · · · · · · · · · · · · · · ·		
in 4.4.2.2-1, to be calculated at the lower end	in 4.4.2.2-1, to be calculated at the lower end	
of full length ℓ of the side frames	of full length ℓ of the side frames	
$P_{ex\underline{w}u}$: Dynamic pressure P_{exw} specified	$P_{ex\underline{s}u}$: Dynamic pressure P_{exs} specified	
in 4.4.2.2-1, to be calculated at the upper end	in 4.4.2.2-1, to be calculated at the upper end	
of full length ℓ of the side frames	of full length ℓ of the side frames	
(b) For side frames where the following i) to iii) are	$\underline{M_2}$: Rotation moment (kN - m) at the lower end of the	
all applicable, M_1 specified in (a) above is to be	side frame due to double bottom bending as	
read as $M_1 + M_2$, where M_2 is to be in	specified in the following (a) or (b). However,	
accordance with Table 6.4.3-2.	where side frames are divided into spans, this	
i) Where the cargo holds under consideration	value is to be taken as 0 for those other than the	
are empty due to multiport loading or other	one in the lowest span.	
reasons.	(a) $M_2 = 0$ with web frames or structures	
ii) Where the web frames or structures similar	similar to web frames at the side.	
to web frames are not provided at the side.	(b)	
iii) Where the side frames under consideration	$M_2 = \frac{1}{480\ell} (2 + 3\lambda_1) K(\lambda_1) \alpha_{\theta} (1 - v^2) (f_{db} \rho g T_{SC}) (s \times 10^{-3}) B_{DB}^{3}$	
are arranged just above bilge hopper tanks or	with no structures in (a) above.	
double bottoms.	Where:	
	ν : Poisson's ratio, to be taken as 0.3	
	f_{dh} : Coefficient regarding double bottom	
	bending corresponding to loading	
	conditions, as specified in Table 6.4.3-1	
	B_{DB} : Double bottom breadth (m) as	
	<u>specified in 7.3.1.6-2.</u>	
	α_{θ} : Side rotation angle factor due to double	
	bottom bending according to the following	
	<u>formula:</u>	
	$\alpha_{\theta} = 0.85 f_1 f_2$	
	f_1 : Coefficient regarding effect of the	

Amended	Original Original	Remarks
1 MINIMON	boundary conditions at fore and aft of	Iteliferito
	the cargo hold, as specified in Table	
	6.4.3-3	
	f_2 : Coefficient regarding effect of the	
	boundary conditions at left and right of	
	the cargo hold according to the	
	following formula:	
	$f_2 = 1.0$ with no bilge hopper	
	provided.	
	$f_2 = \frac{k}{k + c_{BH}}$ with a bilge hopper provided.	
	<u>k</u> : Coefficient of stiffness of the bilge	
	hopper as specified in 7.3.3.1.	
	C_{BH} : Coefficient of torsional	
	stiffness effect of the bilge hopper	
	as specified in Table 7.3.3-1.	
	$K(\lambda_1)$: Degree of elastic deformation according	
	to the following formula:	
	$\underline{K(\lambda_1) = 0.86 - 0.94\lambda_1}$	
	However, to be taken as 0.4 when less than	
	$\frac{0.4.}{\ell}$	
	$\underline{\lambda_1} = \frac{\ell_a}{\ell}$	
	ℓ_a : Vertical distance (m) from the half-	
	height position of the double bottom	
	height to the lower end of the frame as	
	specified in Fig. 6.4.3-2.	
	ℓ: Full length of the side frame as specified	
	in Fig. 6.4.3-2. However, where side	
	frames are supported by side stringers,	
	ℓ is the distance (m) from the top of the	
	inner bottom plating at the side (upper	
	end of hopper tanks, if hopper tanks are	

	`	or Survey and Construction of Steel Ships (2025 Amend	,,
	Amended	Original	Remarks
(2)	Cl	provided) to the side stringer.	
(2)	Shear strength of webs	(2) Shear strength of webs	
	(a) The web thickness is to be not less than the value	The web thickness is to be not less than the value	
	obtained from the following formula:	obtained from the following formula:	
	$t_w = C_{Safety} \frac{F_1}{d_{shr} \tau_v} \times 10^3 (mm)$	$t - C_1 = \frac{F_1 + F_2}{10^3 (mm)}$	
	Siti 1	$t_w = C_{Safety} \frac{F_1 + F_2}{d_{shr} \tau_Y} \times 10^3 (mm)$	
	C_{safety} : Safety factor taken as 1.2.	$\overline{C_{safety}}$: Safety factor taken as 1.2.	
	τ_Y : Permissible shear stress (N/mm^2) taken as	τ_Y : Permissible shear stress (N/mm^2) taken as	
	follows:	follows:	
	$\sigma_{\rm Y}/\sqrt{3}$	$\sigma_{\rm Y}/\sqrt{3}$	
	d_{shr} : Effective shear depth (mm) as specified in	d_{shr} : Effective shear depth (mm) as specified in	
	3.6.4.2.	3.6.4.2.	
	F_1 : Shear force due to side loads (kN) according to	F_1 : Shear force due to side loads (kN) according to	
	the following formula:	the following formula:	
E _ f	$r_{pad}f_{t}\frac{7(P_{exsl}+f_{p}P_{exwl})+3(P_{exsu}+f_{p}P_{exwu})}{20}s\ell_{1shr}$	$F_1 = f_{load} f_t \frac{7(P_{exsl} + f_p P_{exwl}) + 3(P_{exsu} + f_p P_{exwu})}{20} s \ell_{1shr}$	
$F_1 = f_{lo}$		$F_1 = f_{load} f_t {20}$	
	$\times 10^{-3}$	$\times 10^{-3}$	
	ℓ_{1shr} : Effective shear span (m) of the side	ℓ_{1shr} : Effective shear span (m) of the side	
	frame. Where the side frame is provided with	frame. Where the side frame is provided with	
	a bracket, the end of the effective shear span	a bracket, the end of the effective shear span	
	is to be taken as the inner end of the bracket.	is to be taken as the inner end of the bracket.	
	f_{load} , f_t , P_{exsl} , P_{exwl} , P_{exsu} , P_{exwu} , f_p , s	f_{load} , f_t , P_{exsl} , P_{exwl} , P_{exsu} , P_{exwu} , f_p , s	
	: As specified in (1) above.	: As specified in (1) above.	
	(b) For side frames where i) to iii) in (1)(a) above are	F_2 : Shear force (kN) at the lower end of the frame due	
	all applicable, F_1 specified in (a) above is to be	to double bottom bending as specified in the	
	read as $F_1 + F_2$, where F_2 is to be in accordance	following (a) or (b). However, where side frames	
	with Table 6.4.3-2.	are divided into spans, this value is to be taken as	
		0 for those other than the one in the lowest span.	
		(a) $F_2 = 0$ with web frames or structures	
		similar to web frames at the side.	
		(b)	

Amen		Original	mps (2025 / mien	Remarks
		$F_2 = \frac{1}{160\ell^2} (1 + \lambda_1) K(\lambda_1) \alpha_{\theta} (1 - v^2) (f_{db} \rho)$ with no structures in (a) above. Where: $\frac{\ell}{\ell}, \lambda_1, K(\lambda_1), \alpha_{\theta}, v, f_{db}, E$ specified in (1) above. Inding to Boundary Conditions at the Ends of t	ve. B _{DB} : As	
	where both ends are supported by bilge hopper tanks and top side tanks	ℓ,ℓ_{1bdg} ℓ_a	0.8	with that in 3.6.1.2. 2. Adds the values of f_t corresponding to type of structures.
Boundary conditions at ends of side frames (b)	b) Where either end is supported by bilge hopper tanks and top side tanks	$\begin{array}{c c} & & & & \\ & & & & \\ \ell_{1bdg} & & & \\ \ell_{1bdg} & & & \\ \ell_{a} & & & \\ \end{array}$	0.9	

nended	Original	Remarks
	ℓ,ℓ_{1bdg}	
(c) Other than (a) and (b)	$\begin{array}{c} 1.5h_{w} \\ \ell_{1bdg} \\ \ell_{a} \end{array}$	

Amended	Original	Remarks
Table 6.4.3-2 Moment and Shear I	Force to be Additionally Considered	(Newly Added)
Rotation moment at the lower end of the side frame due to double bottom bending M_2 ($kN-m$)	$M_2 = \frac{1}{480\ell} (2 + 3\lambda_1) K(\lambda_1) \alpha_{\theta} (1 - v^2) (f_{db} \rho g T_{SC}) (s \times 10^{-3}) B_{DB}^{3}$	Clarifies moment and shear force due to double
Shear force at the lower end of the frame due to double bottom bending F_2 (kN)	$F_2 = \frac{1}{160\ell^2} (1 + \lambda_1) K(\lambda_1) \alpha_{\theta} (1 - \nu^2) (f_{db} \rho_{\theta} T_{SC}) (s \times 10^{-3}) B_{DB}^{3}$	bottom bending as a table.
Where:		tasie.
$ \frac{v:}{f_{db}} $: Poisson's ratio, to be taken as 0.3 Coefficient regarding double bottom bending corresponding	g to loading conditions, to be taken as 0.7	
B_{DB} : Double bottom breadth (m) as specified in 7.3.1.6-2.		
α_{θ} : Side rotation angle factor due to double bottom bending ac $\alpha_{\theta} = 0.85f_1f_2$	cording to the following formula:	
f_1 : Coefficient regarding effect of the boundary conditions at f	Fore and aft of the cargo hold, as specified in Table 6.4.3-3 eft and right of the cargo hold according to the following formula:	
$f_2 = \frac{k}{k + c_{BH}}$ with a bilge hopper provided.		
<u>k</u> : Coefficient of stiffness of the bilge hopper as specified in 7		
C_{BH} : Coefficient of torsional stiffness effect of the bilge hopper		
$K(\lambda_1)$: Degree of elastic deformation according to the following for	ormula:	
$K(\lambda_1) = 0.86 - 0.94\lambda_1$ However, to be taken as 0.4 when less than 0.4.		
$\frac{\lambda_1 = \frac{\ell_a}{\ell}}{\ell}$		
ℓ_a : Vertical distance (m) from the half-height position of Table 6.4.3-1	the double bottom height to the lower end of the frame as specified in	
	.3-1. However, where side frames are supported by side stringers, ℓ is	
	ng at the side (upper end of hopper tanks, if hopper tanks are provided)	

Table 6.4.3-1 Coefficient corresponding to loading conditions Fuelt-housing	`	related to .	Part C of the	Rules for Su		of Steel Ship	s (2025 Amendment 1)) Remarks
Table 6.4.3.2 Coefficient f _{BC} corresponding to boundary conditions at ends of side frames. Fig. Supported by side stringer			5.4.3-1 Coeff	icient correspo		0	
Table 6.4.3-2 Coefficient from corresponding to boundary conditions at ends of side frames Fig. Supported by top side tank and Both ends or either end- supported by side stringer		I Mu	'ull loading Itiport loading	f _{toaa} 1.0 0.8	fар 0 0.7		This table is deleted in Part 1 but is incorporated into each coefficient in Part 2 corresponding to
Full loading 0.8 0.85 0.8 into each coefficient Part 2 corresponding ship type. Fig. 6.4.3 2 Side Frames Fig. 6.4.3 2 Side Frames ℓ_{1bdg} $\ell_$	Table 6. 4		Supported by to	op side tank and	Both ends or either end		(Deleted) This table is deleted in
Multiport loading $\frac{1.0}{Alternate loading}$ $\frac{1.0}{Alt$	Ful	Il loading				0.8	Part 1 but is incorporated
Alternate loading Fig. 6.4.3-2 Side Frames Fig. 6.4.3-2 Side Frames ℓ_{1bdg} ℓ_{1bdg} ℓ_{a} ℓ_{a} Alternate loading Fig. 6.4.3-2 Side Frames ℓ_{a} ℓ_{b} ℓ_{a} ℓ_{b} ℓ_{a} ℓ_{b} ℓ_{a}		_					
Fig. 6.4.3-2 Side Frames (Deleted) Deleted because integration into Tab $6.4.3-1$. $\begin{array}{c} h_{w}: \text{ Web depth of side frames} \end{array}$	Alter	nate loading	+	.0	1.0	1.0	
(a) Ship with multiple (b) Single deck ship		$2h_w$		$h_{\overline{w}}$: We	ℓ_{1bdg} ℓ ℓ_a	*	integration into Table 6.4.3-1.

	Original	
Amended	Original	Remarks
Chapter 7 STRENGTH OF PRIMARY	Chapter 7 STRENGTH OF PRIMARY	
SUPPORTING STRUCTURES	SUPPORTING STRUCTURES	
7.2 Simple Girders	7.2 Simple Girders	
•	•	
7.2.2 Strength Assessment	7.2.2 Strength Assessment	
7.2.2.1 General*	7.2.2.1 General*	
1 Girders are to be assessed in accordance with 7.2.3 to	1 Girders are to be assessed in accordance with 7.2.3 to	
7.2.5 using the moments and shear forces given in the	7.2.5 using the moments and shear forces given in the	
following (1) to (3), depending on the applicable assessment	following (1) to (3), depending on the applicable assessment	
models.	models.	
(1) Assessment model 1 to 7 shown in Table 7.2.1-2:	(1) Assessment model 1 to 7 shown in Table 7.2.1-2:	
Moments and shear forces are to be in accordance	Moments and shear forces are to be in accordance	
with Table 7.2.2-1 .	with Table 7.2.2-1 .	
(2) Assessment model 8 shown in Table 7.2.1-2:	(2) Assessment model 8 shown in Table 7.2.1-2:	
Moments and shear forces are to be in accordance	Moments and shear forces are to be in accordance	
with 7.2.2.2 .	with 7.2.2.2 .	
(3) For cases not corresponding to (1) and (2) above,	(3) For cases not corresponding to (1) and (2) above,	
applied models are to be deemed appropriate by the	applied models are to be deemed appropriate by the	
Society.	Society.	Amendment (10)
2 Cantilever beams are to comply with the following (1)	2 Corrugated bulkheads are to be assessed in accordance	Clarifies some
and (2).	with 7.2.7.	definitions and corrects
(1) The section moduli of cantilever beams are to be in		typographical errors.
accordance with 7.2.3. The bending moment to be		
considered in applying 7.2.3 is to be not less than that		Specifies the
obtained from the following formula. The moments		requirements related to
due to deck cargo and wave loads need not be		cantilever beams to
considered at the same time.		clarify the application.
$\underline{M} = \underline{M}_d + \underline{M}_h$		
$\underline{M_d}$: Moment (kN - m) due to deck cargo or wave loads		

Amended	Original Original	Remarks
to be obtained from Assessment Model 6 shown in Table 7.2.2-1. M _h : Moment (kN-m) due to the cargo loaded on the hatch cover or wave loads to be obtained from Assessment Model 7 shown in Table 7.2.2-1. (2) Web thicknesses of cantilever beams at any point are to be in accordance with 7.2.4. The shear force to be considered in applying 7.2.4 is to be not less than that obtained from the following formula. Shear force due to deck cargo and wave loads need not be considered at the same time. F = F _d + F _h F _d : Shear force (kN) due to deck cargo or wave loads to be obtained from Assessment Model A shown in Table 7.2.2-1. F _h : Moment (kN) due to the cargo loaded on the hatch cover or wave loads to be obtained from Assessment Model B shown in Table 7.2.2-1. 3 Corrugated bulkheads are to be assessed in accordance with 7.2.7.	Original	Remarks
7.2.6 Bending Stiffness	7.2.6 Bending Stiffness	
7.2.6.1 Depth of Girders For the members specified in Table 7.2.6-1, depth is not to be less than that specified in the table. However, the depth may be reduced provided that the member has equivalent moment of inertia or deflection to the required members. (Deleted)	7.2.6.1 Depth of Girders 1 For the members specified in Table 7.2.6-1, depth is not to be less than that specified in the table. However, the depth may be reduced provided that the member has equivalent moment of inertia or deflection to the required members. 2 Cantilever beams are to comply with the following (1) and (2): (1) The depths of the cantilever beams may be gradually	Transfers the requirements related to ends of cantilever beams

Amended	Original Original	Remarks
Amenaca	tapered down towards their inboard ends from the toes of the end brackets and may be reduced to about 1/2 of the depth at the toe of the end bracket. (2) The sectional areas of face plates may be gradually tapered down from the toes of the end brackets toward the inboard end of the cantilever beams and may be reduced to 0.60 times that at the toe of the end bracket.	
Table 7.2.6-1 D	Depths of Girders	
Member	Depths of Girders (<i>m</i>)	
Web frame	$0.1\ell_{bdg}$	
Web frame supporting cantilever	$0.125\ell_{bdg}$	
Web frame supporting side stringer	$0.125\ell_{bdg}$	Specifies the position
Side stringer	$0.125\ell_{bdg}$	where the requirement
Side stringer forward of collision bulkhead	$0.2\ell_{bdg}$	regarding the depth of
Web frame forward of collision bulkhead	$0.2\ell_{bdg}$	cantilever beams is
Cantilever beam	$0.2\ell_{bdg}$	applied.
Note: ℓ_{bdg} : Effective bending span (m) of the girder as given in 3 7.2.7 Corrugated Bulkheads	7.2.7 Corrugated Bulkheads	
 7.2.7.2 Strength Assessment 1 The section modulus per 1/2 pitch of corrugated bulkheads (See Fig. 7.2.7-1) is to be in accordance with the following (a) and (b): (a) The section modulus per 1/2 pitch of corrugated bulkheads in the maximum load condition and the testing condition is to be not 	 7.2.7.2 Strength Assessment 1 The section modulus per 1/2 pitch of corrugated bulkheads (See Fig. 7.2.7-1) is to be in accordance with the following (a) and (b): (a) The section modulus per 1/2 pitch of corrugated bulkheads in the maximum load condition and the testing condition is to be not less than that obtained from the following 	Amendment (5) Revision of coefficients

(Amendment related to Part C of the Rules to	iment 1))	
Amended	Original	Remarks
$Z_{n50} = C_{Safety} \frac{C_x + 1}{2fC_x} \frac{ M }{\sigma_{all}} \times 10^3 \text{ (cm}^3\text{)}$	$Z_{n50} = C_{Safety} \frac{C_x + 1}{2fC_x} \frac{ M }{\sigma_{all}} \times 10^3 \text{ (cm}^3\text{)}$	buckling
$Z_{n50} = C_{Safety} \frac{1}{2fC_x} \frac{1}{\sigma_{all}} \times 10^3 (cm^3)$ $C_{Safety}: \text{Safety factor to be taken as } 1.0$ $C_x: \text{Coefficient considering buckling of the flange (face plate) to be taken as follows:}$ $C_x = \frac{2.25}{\beta} - \frac{1.25}{\beta^2} \frac{\text{for } \beta > 1.25}{\text{for } \beta > 1.25}$ $C_x = 1 \text{ for } \beta \leq 1.25$ For: $\beta = \frac{b_f}{t_{f-n50}} \sqrt{\frac{\sigma_y}{E}}$ $b_f: \text{Flange breadth } (mm)$ $t_{f-n50}: \text{Flange thickness } (mm)$ $\sigma_y: \text{Specified minimum yield stress } (N/mm^2)$ $E: \text{Young's modulus to be taken as } 206,000$ (N/mm^2) $f: \text{Shape coefficient to be taken as } 1.1$ $M: \text{Bending moment } (kN-m) \text{ due to the applied load as specified in } 7.2.7.3-1$ $\sigma_{all}: \text{Permissible bending stress } (N/mm^2)$ $\text{to be taken as follows:}$ $\sigma_{all} = \frac{235}{K}$ $K: \text{Material factor as specified in } 3.2.1.2$ $\text{(b) The section modulus per } 1/2 \text{ pitch of corrugated bulkheads in the flooded condition is to be not less than that obtained from the following formula:}$ $Z_{n50} = C_{Safety} \frac{C_x + 1}{2fC_x} \frac{ M_p }{\sigma_{all}} \times 10^3 (cm^3)$	$Z_{n50} = C_{Safety} \frac{1}{2fC_x} \frac{1}{\sigma_{all}} \times 10^3 (cm^3)$ $C_{Safety}: \text{Safety factor to be taken as } 1.0$ $C_x: \text{Coefficient considering buckling of the flange (face plate) to be taken as follows:}$ $C_x = \frac{2.25}{\beta} - \frac{1.25}{\beta^2}$ $For: \beta = \frac{b_f}{t_{f-n50}} \sqrt{\frac{\sigma_Y}{E}}$ $b_f: \text{Flange breadth } (mm)$ $t_{f-n50}: \text{Flange thickness } (mm)$ $\sigma_Y: \text{Specified minimum yield stress } (N/mm^2)$ $E: \text{Young's modulus to be taken as } 206,000$ (N/mm^2) $f: \text{Shape coefficient to be taken as } 1.1$ $M: \text{Bending moment } (kN-m) \text{ due to the applied load as specified in } 7.2.7.3-1$ $\sigma_{all}: \text{Permissible bending stress } (N/mm^2)$ $\text{to be taken as follows:}$ $\sigma_{all} = \frac{235}{K}$ $K: \text{Material factor as specified in } 3.2.1.2$ $\text{(b) The section modulus per } 1/2 \text{ pitch of corrugated bulkheads in the flooded condition is to be not less than that obtained from the following formula:}$ $Z_{n50} = C_{Safety} \frac{C_x + 1}{2fC_x} \frac{ M_P }{\sigma_{all}} \times 10^3 (cm^3)$	Revises the calculation formula due to unreasonable values, such as negative values, resulting from the value of β_E .
C_{Safety} : Safety factor to be taken as 1.0	C_{Safety} : Safety factor to be taken as 1.0	

Amended	Original Original	Remarks
C_{χ} : As specified in (a) above f : Shape coefficient to be taken as 1.1 σ_{all} : Permissible bending stress (N/mm^2) to be taken as follows: $\frac{235}{\sigma_{all}} = \frac{2}{K}$ K : Material factor as specified in 3.2.1.2 M_P : Plastic moment as specified in 7.2.7.3-2 (c) The actual section modulus per 1/2 pitch of corrugated bulkheads is to be obtained from the following: $\frac{b_f t_{f-n50} d_0}{2000} + \frac{b_w t_{w-n50} d_0}{6000} (cm^3)$ b_f and b_w : Flange and web breadths (mm), respectively t_{f-n50} and t_{w-n50} : Flange and web thicknesses (mm), respectively d_0 : Corrugation depth (mm)	C_x : As specified in (a) above f : Shape coefficient to be taken as 1.1 σ_{all} : Permissible bending stress (N/mm^2) to be taken as follows: $\frac{235}{\sigma_{all}} = \frac{235}{K}$ K : Material factor as specified in 3.2.1.2 M_p : Plastic moment as specified in 7.2.7.3-2 (c) The actual section modulus per 1/2 pitch of corrugated bulkheads is to be obtained from the following: $\frac{b_f t_{f-n50} d_0}{2000} + \frac{b_w t_{w-n50} d_0}{6000} (cm^3)$ b_f and b_w : Flange and web breadths (mm), respectively t_{f-n50} and t_{w-n50} : Flange and web thicknesses (mm), respectively d_0 : Corrugation depth (mm)	Table 7.2.7-1 and -2 Amendment (4) Revises requirements regarding section modulus at the upper part of corrugated bulkheads. Specifies the reduction requirements for the section modulus at the upper part of corrugated bulkheads.

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment 1)) Original

Remarks

		Tal.1a 7.2	7.1 Mamonta and Chaon Eassas (with	th d > 2 E d)	•
Table 7.2.7-1 Moments and Shear Forces (with $d_H \ge 2.5d_0$)					
Upper end of	Lower end of	Load distribution	Assessment model	Lower part of corrugated bulkher	ad (Point 2 in assessment model)
bulkhead	bulkhead	Load distribution	Assessment model	Moment ⁽¹⁾	Shear force <i>F</i>
Supported by Supported by girder Connected to		Pressure P_1 at the upper end of $\ell \ge 0$	P_1 P_2 P_2 P_2 P_3 P_4 P_2 P_2 P_3 P_4 P_2 P_3 P_4 P_4 P_2 P_4 P_4 P_4 P_4 P_4 P_4 P_5 P_5 P_5 P_6 P_7	$M_2 = \frac{S\ell^2}{60}(2P_1 + 3P_2)$	$F_2 = \frac{S\ell}{20}(3P_1 + 7P_2)$
girder Connected to stool Connected to stool	Midspan pressure = 0	$\mu = \frac{\ell_2}{\ell}$ $-\ell_1 - \ell_2$ $1 - \ell_2$	$M_2 = \frac{SP_2\ell^2}{60}(3\mu^4 - 10\mu^3 + 10\mu^2)$	$F_2 = \frac{SP_2\ell}{20}(2\mu^4 - 5\mu^3 + 10\mu)$	
Connected to deck Supported by girder Connected to double bottom Connected to stool	Pressure P_1 at the upper end of $\ell \ge 0$	P_1 P_2 P_1 P_2	$M_2 = \frac{S\ell^2}{120}(7P_1 + 8P_2)$	$F_2 = \frac{S\ell}{40}(9P_1 + 16P_2)$	
	double bottom	Midspan pressure = 0	$\mu = \frac{\ell_2}{\ell}$ $1 \qquad \ell_1 \qquad \ell_2 \qquad 2$	$M_2 = \frac{SP_2\ell^2}{120}(3\mu^4 - 15\mu^3 + 20\mu^2)$	$F_2 = \frac{SP_2\ell}{40}(\mu^4 - 5\mu^3 + 20\mu)$

Length (m) between the supporting points as specified in Fig. 7.2.7-2 and -3

Amended

 $[\]ell_1$: Length (m) from one end of ℓ to the zero pressure point to be taken as $\ell_1 = \ell - \ell_2$

 $[\]ell_2$: Length (m) from the other end of ℓ to the zero pressure point

 P_1 and P_2 : Loads (kN/m^2) corresponding to each assessment condition specified in Table 7.2.1-1 to be calculated at the upper and lower ends of ℓ of the girder, respectively. However, where an upper stool is provided, P_1 is to be calculated at the deck level.

Breadth of 1/2 pitch (m) of the corrugation

⁽¹⁾ The required section modulus of the corrugated bulkheads within the range from the upper end of l to l/3 may be calculated using $0.75M_2$.

Amended Amended				Original	Accer Ships (2023 / Amendi	Remarks
Table 7.2.7-2 Moments and Shear Forces (with $d_H < 2.5d_0$)						
Upper end of bulkhead	Assessment model		Lower stool at inner bottom plating			
		district which		Moment $M^{(1)}$	Shear force F	Moment M
Supported Connected by girder to deck or Connected to stool bottom	Supported by girder Connected	Pressure P_1 at the upper end of $\ell \ge 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$M = \max(M_1 , M_a)$ $M_1 = \frac{S\ell^2}{60}(3P_1 + 2P_2)$ $M_a = \frac{S\ell^2}{60} \left[\frac{10(P_2 - P_1)\alpha^3 + 30P_1\alpha^2}{-3(7P_1 + 3P_2)\alpha + 3P_1 + 2P_2} \right]$	$F = \max(F_1 , F_a)$ $F_1 = -\frac{S\ell}{20}(7P_1 + 3P_2)$ $F_a = \frac{S\ell}{20} \begin{bmatrix} 10(P_2 - P_1)\alpha^2 + 20P_1\alpha \\ -7P_1 - 3P_2 \end{bmatrix}$	$M_2 = \frac{S\ell^2}{60}(2P_1 + 3P_2)$
	double bottom Connected	Midspan pressure = 0	$\mu = \frac{\ell_2}{\ell}$ $-\ell_1 \rightarrow \ell_2 \rightarrow \ell_2$ $1 \leftarrow \ell_2 \rightarrow \ell_2$	$M = \max(M_1 , M_a)$ $M_1 = -\frac{SP_2\ell_2^2}{60}(3\mu^2 - 5\mu)$ $M_a = \frac{SP_2\ell_2^2}{60}[(6\mu^2 - 15\mu + 10)\alpha - 3\mu^2 + 5\mu]$ $-\frac{SP_2\ell_2^2}{6}\alpha + \left[\frac{SP_2}{6\ell_2}(\alpha\ell - \ell_1)^3\right]$	$F = \max(F_1 , F_a)$ $F_1 = \frac{SP_2\ell_2}{20}(2\mu^3 - 5\mu^2)$ $F_a = \frac{SP_2\ell_2}{20}(2\mu^3 - 5\mu^2)$ $+ \left[\frac{SP_2}{2\ell_2}(\alpha\ell - \ell_1)^2\right]$	$M_2 = \frac{SP_2\ell_2^2}{60}$ $(3\mu^2 - 10\mu + 10)$
Connected	Supported by girder Connected to deck or	Pressure P_1 at the upper end of $\ell \ge 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$M_{a} = \max(M_{a} , 0.6M_{2})$ $M_{a} = \frac{S\ell^{2}\alpha}{120} \begin{bmatrix} 20(P_{2} - P_{1})\alpha^{2} + 60P_{1}\alpha \\ -33P_{1} - 12P_{2} \end{bmatrix}$	$F = \max(F_1 , F_a)$ $F_1 = -\frac{S\ell}{40} (11P_1 + 4P_2)$ $F_a = \frac{S\ell}{40} \begin{bmatrix} 20(P_2 - P_1)\alpha^2 \\ +40P_1\alpha - 11P_1 - 4P_2 \end{bmatrix}$	$M_2 = \frac{S\ell^2}{120} (7P_1 + 8P_2)$
to deck	double bottom Connected to stool	Midspan pressure = 0	$\mu = \frac{\ell_2}{\ell}$ $1 \qquad \qquad \ell \qquad \qquad \ell$	$M = \max(M_a , 0.6M_2)$ $M_a = \frac{SP_2\ell_2\ell\alpha}{40}(\mu^3 - 5\mu^2) + \left[\frac{SP_2}{6\ell_2}(\alpha\ell - \ell_1)^3\right]$	$F = \max(F_1 , F_a)$ $F_1 = \frac{SP_2\ell_2}{40}(\mu^3 - 5\mu^2)$ $F_a = \frac{SP_2\ell_2}{40}(\mu^3 - 5\mu^2)$ $+ \left[\frac{SP_2}{2l_2}(\alpha\ell - \ell_1)^2\right]$	$M_2 = \frac{SP_2\ell_2^2}{120}$ $(3\mu^2 - 15\mu + 20)$
ℓ , ℓ_1 and ℓ_2 : As given in Table 7.2.7-1 P_1 and P_2 : Loads (kN/m^2) corresponding to each assessment condition specified in Table 7.2.1-1 to be calculated at the web centre of the upper and lower ends of ℓ of the girder, respectively. However, where an upper stool is provided, P_1 is to be calculated at the deck level. S: Breadth of $1/2$ pitch (m) of the corrugation α : $\frac{\ell - h_S}{\ell}$ h_S : Height (m) of the lower stool						

•	Amended		Original	Remarks
(1) When cal	culating the required section modulus of corrugated	l bulkheads within the range from	the upper end of l to $l/3$, the moment M need not be	greater than $0.75M_2$.
	Tal	ole 7.2.7-3 Plastic Mome	ents	
	Lower end	Upper end		
		Connected to stool	Connected to deck	
	4) [6	Supported by girder	D C 02	
	(1) Supported by girder Connected to deck or double	$\frac{P_b \mathcal{S}\ell^2}{Z_{b'}}$	$\frac{P_b \mathcal{S} \ell^2}{2 r'}$	
	bottom	$4(2 + \frac{{z_1}'}{{z_0}'} + \frac{{z_2}'}{{z_0}'})$	$\frac{1}{4(2+\frac{z_2'}{z_0'})}$	
	(2) Connected to stool	$P_S S(\ell + h_S)^2$	$P_S S(\ell + h_S)^2$	
		$4(2+\frac{{z_1}'}{{z_0}'}+\frac{d_H}{d_0})$	$4(2+\frac{d_H}{d_0})$	
		Not to be less than the value in	(1).	
	P_b : Load (kN/m^2) acting on the bulkh $P_b = \frac{P_1 + P_2}{2}$	ead to be taken as follows:		
	P_S : Load (kN/m^2) acting on the bulkh $P_b = \frac{P_1 + P_3}{2}$	ead and lower stool to be taken a	s follows:	
	P_1 and P_2 : Loads (kN/n)	n^2) in the flooded condition the upper and lower ends of ℓ , re	specified in Table 7.2.1-1 to be spectively.	
		oper stool is provided, P_1 is to be		
	P_3 : Load (kN/m^2) in the f end of the lower stool	looded condition specified in Ta	ble 7.2.1-1 to be calculated at the lower	
	S: $1/2$ pitch (m) of the corrugation			
	ℓ : Length (m) between the supporting	ng points as specified in Fig. 7.2.7	7-2	Amendment (5)
	d_0 : Corrugation depth (mm) d_H : Breadth (mm) of the stool on the	ton of the inner hettem plating		Revises the coefficients
	Z_i : Plastic section modulus consideri		ken as follows:	that take into accoun
	$Z_i' = \frac{2C_{xi}}{C_{xi} + 1} f Z_i (i = 0)$			strength reduction due to
	σ_{χ_l} .	, 1,2)		buckling.
	Where: 2.25 1.25			
	$C_{xi} = \frac{2.25}{\beta_i} - \frac{1.25}{\beta_i^2}$ (i = 0	$(1,1,2)$ for $\beta_i > 1.25$		Revises the formula
	$C_{xi} = 1$ $(i = 0, 1, 2)$ for β			because it could result in

unreasonable

values

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment)				
Amended	Original	Remarks		
$\beta_i = \frac{b_f}{t_{fi-n50}} \sqrt{\frac{\sigma_Y}{E}} \qquad (i = 0, 1, 2)$ $Z_0 \text{ and } t_{f0-n50} : \qquad \text{Minimum section modulus } (cm^3)$ $\text{the flange of midpart for } 0.6\ell \text{ of the corrug}$ $Z_1 \text{ and } t_{f1-n50} : \qquad \text{Minimum section modulus } (cm^3)$ $\text{of the flange at the upper end of the bulkhea}$ $Z_2 \text{ and } t_{f2-n50} : \qquad \text{Minimum section modulus } (cm^3)$ $\text{of the flange at the lower end of the bulkhea}$ $\sigma_Y : \text{ Specified minimum yield stress } (N/mn)$ $E : \qquad \text{Young's modulus to be taken as } 206,00$ $f : \qquad \text{Shape coefficient to be taken as } 1.1$	such as negative values depending on the value of β_i .			
7.4 Pillars, Struts, Etc.7.4.2 Scantling Requirements	7.4 Pillars, Struts, Etc.7.4.2 Scantling Requirements			
 7.4.2.1 Buckling Strength Requirements (Euler Buckling)* For members subject to axial compressive loads, such as pillars or struts, their sectional area is to be not less than that obtained from the following formula: Anso = Cs F/ (cm²) Cs: Safety factor to be taken as 1.4. However, when struts are placed between longitudinals in double bottom and double side, Cs is to be taken as 2.8. F: Compressive load (kN) specified in each requirement. However, the compressive load may be obtained by direct strength analysis. Where pillars are subject to strength assessment, 4.5.2.1-3 is to be applied. In such cases, loads transmitted from upper tween deck pillars to the 	7.4.2.1 Buckling Strength Requirements (Euler Buckling) For members subject to axial compressive loads, such as pillars or struts, their sectional area is to be not less than that obtained from the following formula: $A_{n50} = C_S \frac{F}{\sigma_{cr}} \times 10 \ (cm^2)$ $C_S: \text{ Safety factor to be taken as 1.4. However, when struts are placed between longitudinals in double bottom and double side, C_S is to be taken as 2.8. F: \text{ Compressive load } (kN) \text{ specified in each requirement. However, the compressive load may be obtained by direct strength analysis.} (Newly Added)$	Amendment (7) Clarification of loads to be used in buckling strength assessment of pillars The reference to the requirements for calculating compressive loads is to be clearly specified. In addition, it is to be clearly stated that loads transmitted from upper tween deck pillars are also to be taken into account.		

Amended	Original Original	Remarks
pillars under assessment are also to be taken into account. (Omitted)	(Omitted)	
Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	
8.3 Structural Model	8.3 Structural Model	
8.3.3 Meshing and Related Issues	8.3.3 Meshing and Related Issues	Amendment (8)
8.3.3.5 Local Models*	8.3.3.5 Local Models*	Specifies criteria when
1 Where the geometry or structural responses cannot be	1 Where the geometry or structural responses cannot be	opting to assess stress
adequately represented with the typical mesh size specified in	adequately represented with the typical mesh size specified in	concentration areas
8.3.3.1, or where stress concentration areas are assessed,	8.3.3.1, strength assessment may be carried out using a local	
strength assessment may be carried out using a local structural	structural model with a finer mesh size (hereinafter, "local	
model with a finer mesh size (hereinafter, "local model") of the location to be considered. The finer mesh size means a	model") of the location to be considered. The finer mesh size	
mesh size appropriately determined so as to obtain the	means a mesh size appropriately determined so as to obtain the intended representation of structural responses.	
intended representation of structural responses.	the intended representation of structural responses.	
2 A smooth transition of the mesh size from a location	2 A smooth transition of the mesh size from a location	
modelled with the finer mesh size to locations modelled with	modelled with the finer mesh size to locations modelled with	
the typical mesh size is to be maintained.	the typical mesh size is to be maintained.	
3 Finite element analysis using only a local model may	3 Finite element analysis using only a local model may	
be carried out utilizing the data obtained from finite element	be carried out utilizing the data obtained from finite element	
analysis using a structural model reproducing cargo holds.	analysis using a structural model reproducing cargo holds.	

Amended	Original	Remarks
8.6 Strength Assessment	8.6 Strength Assessment	
8.6.1 Yield Strength Assessment	8.6.1 Yield Strength Assessment	A (9)
8.6.1.2 Criteria*	8.6.1.2 Criteria*	Amendment (8) Specifies criteria when
1 All members to be assessed in the target hold are to comply with the following formula: $\lambda_y \leq \lambda_{yperm}$ λ_y : Yield utilisation factor, taken as follows: For shell elements: $\lambda_y = \frac{\sigma_{eq}}{235/K}$ For rod elements or beam elements: $\lambda_y = \frac{ \sigma_a }{235/K}$ K : Material factor specified in 3.2.1. λ_{yperm} : Permissible utilisation factor, taken as specified in Table 8.6.1-1: 2 The criteria for the optional assessment of stress concentration areas are to be as deemed appropriate by the Society.	All members to be assessed in the target hold are to comply with the following formula: $\lambda_y \leq \lambda_{yperm}$ λ_y : Yield utilisation factor, taken as follows: For shell elements: $\lambda_y = \frac{\sigma_{eq}}{235/K}$ For rod elements or beam elements: $\lambda_y = \frac{ \sigma_a }{235/K}$ K : Material factor specified in 3.2.1. λ_{yperm} : Permissible utilisation factor, taken as specified in Table 8.6.1-1 : (Newly Added)	opting to assess stress concentration areas

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment)			
Amended	Original	Remarks	
Annex 8.6 BUCKLING STRENGTH	Annex 8.6 BUCKLING STRENGTH		
ASSESSMENT BASED ON CARGO HOLD	ASSESSMENT BASED ON CARGO HOLD		
ANALYSIS	ANALYSIS		
An2. Buckling Strength Assessment Methods for Different Types of Structures	An2. Buckling Strength Assessment Methods for Different Types of Structures		
An2.4 Corrugated Bulkheads	An2.4 Corrugated Bulkheads		
An2.4.1 Flange and Web Local Buckling	An2.4.1 Flange and Web Local Buckling		
2 In the application of -1 above, for local buckling under	2 In the application of -1 above, for local buckling under		
compressive loads in longer side direction of the flange of	compressive loads in longer side direction of the flange of		
corrugated bulkheads, utilisation factor may be calculated by	corrugated bulkheads, utilisation factor may be calculated by		
the following formulae instead of the assessment specified in	the following formulae instead of the assessment specified in		
An2.2.1. In this case, local buckling under compressive loads	An2.2.1. In this case, local buckling under compressive loads		
in shorter side direction specified in An2.2.2 does not need to	in shorter side direction specified in An2.2.2 does not need to		
be assessed. Panel is to be divided in accordance with -1	be assessed. Panel is to be divided in accordance with -1		
above. $\sigma_{\cdot\cdot}$	above. $\sigma_{\cdot \cdot}$	Amendment (5)	
$\eta_l = \frac{\sigma_{\chi}}{\sigma_{cr\ cor}}$	$\eta_l = \frac{\sigma_\chi}{\sigma_{cr_cor}}$	Revises the coefficients	
$\sigma_{cr\ cor}$: Critical buckling stress considering buckling	σ_{cr_cor} : Critical buckling stress considering buckling	that take into account	
of corrugated bulkhead (N/mm^2) is according	of corrugated bulkhead (N/mm^2) is according	strength reduction due to	
to the following formula.	to the following formula.	buckling.	
		Revises the formula	
$\sigma_{cr_cor} = \frac{2C_x}{C_x + 1} \sigma_{Yp}$	$\sigma_{cr_cor} = rac{2C_x}{C_x + 1}\sigma_{Yp}$	because it could result in	
C_x : According to the following	C_x : According to the following	unreasonable values	
formula.	formula.	such as negative values	
$C_x = \frac{2.25}{\beta} - \frac{1.25}{\beta^2} \text{ for } \beta > 1.25$	$C_x = \frac{2.25}{\beta} - \frac{1.25}{\beta^2}$	depending on the value	
$G_{x} = \frac{101 \rho > 1.23}{\beta}$	$G_x = \frac{G_x}{\beta} = \frac{G_x}{\beta^2}$	of β .	
$C_x = 1 \text{ for } \beta \le 1.25$			

	or Survey and Construction of Steel Ships (2025 Amend	
Amended	Original	Remarks
Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	
10.7 Structural Strength against Bow Impact Pressure	10.7 Structural Strength against Bow Impact Pressure	
10.7.2 Blunt Ships	10.7.2 Blunt Ships	
10.7.2.6 Primary Supporting Members 7 The web thickness t_w (mm) of the primary supporting member that includes the deck and bulkhead in way of side shell is not to be less than that obtained by the following formula: $t_w = \frac{P_{FB2}b_{BI}}{\sin\varphi_W\sigma_{cr}}$ $\varphi_W: \text{Angle } (deg) \text{ between the web and shell plating of the primary supporting member } (See \text{ Fig. 10.7.2-3})$ $\sigma_{cr}: \text{ Critical buckling stress } (N/mm^2) \text{ of the web of the primary supporting member or deck or bulkhead panel obtained by the following formulae: When h_w \geq b_w \sigma_{cr} = \left(\frac{2.25}{\beta} - \frac{1.25}{\beta^2}\right) \sigma_Y \text{ for } \beta > 1.25 \overline{\sigma_{cr}} = \sigma_Y \text{ for } \beta \leq 1.25 \beta = \frac{b_w}{t_w} \sqrt{\frac{\sigma_Y}{E}} When h_w < b_w$	10.7.2.6 Primary Supporting Members 7 The web thickness t_w (mm) of the primary supporting member that includes the deck and bulkhead in way of side shell is not to be less than that obtained by the following formula: $t_w = \frac{P_{FB2}b_{BI}}{\sin\varphi_w\sigma_{cr}}$ $\varphi_W: \text{Angle } (deg) \text{ between the web and shell plating of the primary supporting member } (See \text{ Fig. 10.7.2-3})$ $\sigma_{cr}: \text{ Critical buckling stress } (N/mm^2) \text{ of the web of the primary supporting member or deck or bulkhead panel obtained by the following formulae: When h_w \geq b_w \sigma_{cr} = \min\left(\left(\frac{2.25}{\beta} - \frac{1.25}{\beta^2}\right)\sigma_Y, \sigma_Y\right) \beta = \frac{b_w}{t_w} \sqrt{\frac{\sigma_Y}{E}} When h_w < b_w$	Amendment (5) Revises the coefficients that take into account strength reduction due to buckling. Revises the formula because it could result in unreasonable values such as negative values depending on the value of β. Revises the formula because it could result in

Amended	Original	Remarks
$\sigma_{cr} = \min \left(\left[\frac{\frac{h_w}{b_w} \left(\frac{2.25}{\beta_1} - \frac{1.25}{\beta_1^2} \right)}{+ \left(1 - \frac{h_w}{b_w} \right) \left(\frac{0.06}{\beta} + \frac{0.6}{\beta^2} \right)} \right] \sigma_Y, \sigma_Y \right)$	$\sigma_{cr} = \min \left(\left[\frac{h_w}{b_w} \left(\frac{2.25}{\beta} - \frac{1.25}{\beta^2} \right) + \left(1 - \frac{h_w}{b_w} \right) \left(\frac{0.06}{\beta} + \frac{0.6}{\beta^2} \right) \right] \sigma_Y, \sigma_Y \right)$	unreasonable values such as negative values depending on the values of β and h_w/b_w .
$\beta_1 = \max(\beta, 1.25)$ $\beta = \frac{h_w}{t_w} \sqrt{\frac{\sigma_Y}{E}}$ $h_w: \text{ Web depth } (mm) \text{ of the primary supporting member}$ $b_w: \text{ Spacing } (mm) \text{ of the web stiffeners of the primary supporting member}$ $\sigma_Y: \text{ Specified minimum yield stress } (N/mm^2)$ of the web of the primary supporting member	$\beta = \frac{h_w}{t_w} \sqrt{\frac{\sigma_Y}{E}}$ $h_w: \text{Web depth } (mm) \text{ of the primary supporting member}$ $b_w: \text{Spacing } (mm) \text{ of the web stiffeners of the primary supporting member}$ $\sigma_Y: \text{Specified minimum yield stress } (N/mm^2)$ of the web of the primary supporting member	

Amended	Original	Remarks
Part 2-1 CONTAINER CARRIERS	Part 2-1 CONTAINER CARRIERS	
Chapter 5 LONGITUDINAL STRENGTH	Chapter 5 LONGITUDINAL STRENGTH	
5.4 Hull Girder Ultimate Strength	5.4 Hull Girder Ultimate Strength	
 5.4.2 Hull Girder Ultimate Strength Assessment The following formula is to be satisfied. γ_SM_S + γ_WM_W ≤ M_U γ_Mγ_{DB} γ_S: Partial safety factor for the vertical still water bending moment, to be taken as follows. γ_S = 1.0 γ_W: Partial safety factor for the vertical wave bending moment, to be taken as follows. γ_W = 1.2 M_S, M_W: Vertical still water bending moment and vertical wave bending moment (kN-m) for the load cases "hogging" and "sagging" as specified in 4.2.2.5 M_U: The hull girder ultimate strength (kN-m), which is to be obtained by the method specified in Annex 5.4, Part 1. However, instead of the loadend shortening curves formula σ_{CR5} - ε specified in An2.3.8, Annex 5.4, Part 1, the following is to be used. 	 5.4.2 Hull Girder Ultimate Strength Assessment The following formula is to be satisfied. γ_SM_S + γ_WM_W ≤ M_U/γ_Mγ_{DB} γ_S: Partial safety factor for the vertical still water bending moment, to be taken as follows. γ_S = 1.0 γ_W: Partial safety factor for the vertical wave bending moment, to be taken as follows. γ_W = 1.2 M_S, M_W: Vertical still water bending moment and vertical wave bending moment (kN-m) for the load cases "hogging" and "sagging" as specified in 4.2.2.5 M_U: The hull girder ultimate strength (kN-m), which is to be obtained by the method specified in Annex 5.4, Part 1. However, instead of the loadend shortening curves formula σ_{CR5} - ε specified in An2.3.8, Annex 5.4, Part 1, the following is to be used. 	Amendment (5) Revises the coefficients that take into account strength reduction due to buckling.
		Revises the formula because it could result in

Amended	Original Original	Remarks
Chapter 9 FATIGUE	Chapter 9 FATIGUE	
9.4 Torsional Fatigue Strength Assessment	9.4 Torsional Fatigue Strength Assessment	
9.4.5 Hot Spot Stresses	9.4.5 Hot Spot Stresses	
 9.4.5.3 Loading Conditions and Fractions of Time to be Considered 1 Standard loading conditions and fractions of time are to be as given in Table 9.4.5-1. 2 Notwithstanding -1 above, an appropriate combination 	(Newly Added)	Amendment (10) Clarifies some definitions and corrects typographical errors. Standard loading
is to be considered in cases where considering loading conditions and fractions of time other than those given in Table 9.4.5-1.		conditions and fractions of time are clarified for torsional fatigue strength assessment.
Table 9.4.5-1 Standard Loading Conditions and Fractions of Time		
Loading condition Fraction of time $\alpha_{(j)}$		
Container cargo homogeneously loaded condition		
9.4.5.4 Weld Root Fatigue Strength Assessment Weld root fatigue strength assessment is to be in accordance with 9.7, Part 1.	9.4.5.3 Weld Root Fatigue Strength Assessment Weld root fatigue strength assessment is to be in accordance with 9.7, Part 1.	

	or Survey and Construction of Steel Ships (2025 Amen	
Amended	Original	Remarks
Part 2-4 WOOD CHIP CARRIERS	Part 2-4 WOOD CHIP CARRIERS	
Chapter 6 LOCAL STRENGTH	Chapter 6 LOCAL STRENGTH	
6.1 General	6.1 General	
6.1.1 Application	6.1.1 Application	
6.1.1.1 Chip Carriers	6.1.1.1 Chip Carriers	
Fig. 6.1.1-2 Application E	Example of Chip Carriers	
Side frame specified in 6.4.3, Part 1		

Amended	Original Original	Remarks
6.2 <u>Stiffeners</u>	6.2 <u>Ballast Holds</u>	Rearranges the composition of chapter.
6.2.1 Side Frames	6.2.1 Side Frames	
 6.2.1.1 In applying 6.4.3.2, Part 1, the scantlings for side frames in the cargo holds of chip carriers are to be in accordance with the following (a) and (b). However, when the type of construction cannot be easily categorised into the type shown in Fig. 6.2.1-1, the scantlings are to be as deemed appropriate by the Society. (a) The value of f_{bc} is to be taken as 0.85, not 0.8. (b) Rotation moment M₂ and shear force F₂ at the lower end of the side frame due to double bottom bending need not be considered. 	(Newly Added)	Amendment (3) Clarifies the requirements related to side frames Specifies the substitution of coefficients for chip carriers. There is no change of requirements compared to the current rules.
Fig. 6.2.1-1 Example Cross Section of a Chip Carrier Supported by Side Stringers	(Newly Added)	

Amended	Original	Remarks
		Modifies the numbers.
6.2.1.2 Ballast Holds	6.2.1.1 Scantlings of Side Frames	
The section modulus of the side frame and the	The section modulus of the side frame and the	
thickness of the web in the cargo hold where the ballast is	thickness of the web in the cargo hold where the ballast is	
loaded are to satisfy the requirements of 6.4.2 and 6.4.3.2,	loaded are to satisfy the requirements of 6.4.2 and 6.4.3.2,	
Part 1. However, when applying 6.4.2, Part 1, only	Part 1. However, when applying 6.4.2, Part 1, only	
assessment based on a liquid cargo in Table 6.2.2-1, Part 1 is	assessment based on a liquid cargo in Table 6.2.2-1, Part 1 is	
applied, and the effective bending span and effective shear	applied, and the effective bending span and effective shear	
span of the side frame is specified in 6.4.3.2, Part 1.	span of the side frame is specified in 6.4.3.2 , Part 1 .	
	(A DII W	
(Deleted)	6.3 Bilge Hopper Tanks	Rearranges the
		composition of chapter.
(Deleted)	6.3.1 Side Longitudinals and Longitudinals on Bilge	
(Deleted)	Hopper Plating	
	Hopper I mang	Modifies the numbers.
6.2.1.3 Connections of the Bottom of the Side Frame	6.3.1.1 Connections of the Bottom of the Side Frame	wiodines the hambers.
In applying the requirements of 6.4 , Part 1 , the section	In applying the requirements of 6.4 , Part 1 , the section	
modulus of the side longitudinals and longitudinals on bilge	modulus of the side longitudinals and longitudinals on bilge	
hopper plating that support the support brackets installed	hopper plating that support the support brackets installed	
inside the bilge hopper tank specified in 10.2.2.2-2 are not to	inside the bilge hopper tank specified in 10.2.2.2-2 are not to	
less than the value calculated as the distance (<i>m</i>) between the	less than the value calculated as the distance (<i>m</i>) between the	
girders in the formula ℓ regardless of the placement of the	girders in the formula ℓ regardless of the placement of the	
support bracket.	support bracket.	

Amended	Original	Remarks
Part 2-5 GENERAL CARGO SHIPS AND	Part 2-5 GENERAL CARGO SHIPS AND	remarks
REFRIGERATED CARGO SHIPS	REFRIGERATED CARGO SHIPS	
REFRIGERATED CARGO SHIFS	REFRIGERATED CARGO SHIFS	
Character LOCAL STRENGTH	Charles C. LOCAL CEDENCELL	
Chapter 6 LOCAL STRENGTH	Chapter 6 LOCAL STRENGTH	
6.2 Stiffeners	(Newly Added)	Amendment (3)
		Clarifies the
		requirements related to
		side frames
(21 61 6		
6.2.1 Side Frames	(Newly Added)	C
6.2.1.1 General Cargo Ships	(Newly Added)	Specifies the substitution of coefficients for
In applying 6.4.3.2, Part 1, the scantlings for side frames in	(Newly Hudeu)	general cargo ships.
the cargo holds of general cargo ships are to be in accordance		As shown in Fig.6.1.1-1,
with the following (a) and (b). However, when the type of		the one provided in the
construction cannot be easily categorised into the type shown		second layer with the
in Fig. 6.2.1-1, the scantlings are to be as deemed appropriate		first layer being double
by the Society.		side structure is assumed
(a) The value of f_{bc} is to be taken as 1.0, not 0.8.		to be the side frames of
(b) Rotation moment M_2 and shear force F_2 at the		general cargo ships.
lower end of the side frame due to double bottom		The coefficient f_{bc}
bending need not be considered.		corresponding to
		boundary conditions is to
		be taken as 1.0, meaning
		fixed. Moment and shear
		force due to double
		bottom bending need not
		be considered.

Amended-Original Requirements Comparison Table

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment 1))

(Amendment related to Part C of the Rules to	or Survey and Construction of Steel Ships (2025 Amer	dment 1))
Amended	Original	Remarks
Fig. 6.2.1-1 Example Cross Section of a General Cargo Ship	(Newly Added)	
Double Side 6.2.1.2 Refrigerated Cargo Ships In applying 6.4.3.2, Part 1 to side frames in the cargo holds of refrigerated cargo ships, rotation moment M_2 and shear force F_2 at the lower end of the side frame due to double bottom bending need not be considered. However, when the type of construction cannot be easily categorised into the type shown in Fig. 6.2.1-1, the scantlings are to be as deemed appropriate by the Society.	(Newly Added)	Amendment (3) Clarifies the requirements related to side frames Specifies the substitution of coefficients for refigerated cargo ships. Being multiple-deck ships, the coefficient f_{bc} is set to 0.8 for the bottom layer and 1.0 for the other layers, which are considered fixed. (Specified in Part 1) In addition, rotation moment and shear force at the lower end of the side frames due to double bottom bending

	1 \	//
Amended	Original	
Amended Fig. 6.2.1-2Example Cross Section of a Refrigerated Cargo Ship	Original (Newly Added)	Remarks need not be considered
6.2.1.3 Cement Carriers In applying 6.4.3.2, Part 1, the scantlings of side frames in the cargo holds of cement carriers are to be in accordance with the following (a) and (b). However, when the type of construction cannot be easily categorised into the type shown in Fig. 6.2.1-1, the scantlings are to be as deemed appropriate by the Society. (a) The value of f_{load} is to be taken as 0.8, not 1.0, and value of f_{bc} is to be taken as 0.9, not 0.8. (b) Rotation moment M_2 and shear force F_2 at the lower end of the side frame due to double bottom bending need not be considered.	(Newly Added)	Specifies the substitution of coefficients for cement carriers. As for cement carriers, it is considered that the empty hold due to multiport loading condition is dominant because the internal cargo load counteracts the external seawater pressure in full loading condition. Therefore, the coefficient $f_{load} = 0.8$ for multiport loading condition and the coefficient $f_{loc} = 0.9$ for

(Amendment related to Part C of the Rules for Surv	y and Construction of Steel Ship	os (2025 Amendment 1))
--	----------------------------------	------------------------

Amended	Original Original	Remarks
Fig. 6.2.1-3 Example Cross Section of a Cement Carrier Void Void	(Newly Added)	boundary conditions, taking into account the structure with void under the inner bottom plate, which is unique to cement ships. In addition, rotation moment and shear force at the lower end of the side frames due to double bottom bending need not be considered

(A	Amendment re	elated to	Part C	of the Rul	es for Surve	v and Constr	uction of Steel	Ships	(2025 Ar	nendment 1))
ι-						./			(— · – · – · – ·		,,

Amended	Original	Remarks
6.3 Ships Loaded with Special Cargo	6.2 Ships Loaded with Special Cargo	Modifies the numbers.
6. <u>3</u> .1 General	6. <u>2</u> .1 General	
6.3.1.1 Where loads of cargoes are not to be regarded as distributed loads, 6.3 is to be followed.	6.2.1.1 Where loads of cargoes are not to be regarded as distributed loads, 6.2 is to be followed.	
6.3.2 Ships Loaded with Steel Coils	6.2.2 Ships Loaded with Steel Coils	
6.3.2.1 Plates and Stiffeners Plates and stiffeners for ships loaded with steel coils are to be in accordance with 10.1.	6.2.2.1 Plates and Stiffeners Plates and stiffeners for ships loaded with steel coils are to be in accordance with 10.1.	
6.3.3 Ships Loaded with Vehicles (Including Cases Where Vehicles Are Used During Cargo Handling)	6.2.3 Ships Loaded with Vehicles (Including Cases Where Vehicles Are Used During Cargo Handling)	
 6.3.3.1 Plates and Stiffeners 1 The plates and stiffeners of decks and inner bottom platings on which vehicles are loaded are to be in accordance with 10.1, Part 2-6. 2 Where plates and stiffeners are subjected to concentrated loads from wheels during cargo handling that vehicles such as forklifts are used, the plates and stiffeners are to be in accordance with 10.1, Part 2-6. 	 6.2.3.1 Plates and Stiffeners 1 The plates and stiffeners of decks and inner bottom platings on which vehicles are loaded are to be in accordance with 10.1, Part 2-6. 2 Where plates and stiffeners are subjected to concentrated loads from wheels during cargo handling that vehicles such as forklifts are used, the plates and stiffeners are to be in accordance with 10.1, Part 2-6. 	
6.3.4 Ships Loaded with Other Special Cargo	6.2.4 Ships Loaded with Other Special Cargo	
6. <u>3</u> .4.1	6. <u>2</u> .4.1	
Ships loaded with special cargo other than that described in 6.3.2 and 6.3.3 above are to be as deemed	Ships loaded with special cargo other than that described in 6.2.2 and 6.2.3 above are to be as deemed	

(Amendment related to Part C of the Rules f	//	
Amended	Original	Remarks
appropriate by the Society, taking into consideration the mode	appropriate by the Society, taking into consideration the mode	
of action of the load by each cargo.	of action of the load by each cargo.	
Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	
10.1 Ships Carrying Steel Coils	10.1 Ships Carrying Steel Coils	
10.1.5 Side Frames (Ships Without Bilge Hoppers and Single-Side Ships)	10.1.5 Side Frames (Ships Without Bilge Hoppers and Single-Side Ships)	
10.1.5.1 Side Frames	10.1.5.1 Side Frames	
1 In the cases other than three-tiered loading, the section	1 In the cases other than three-tiered loading, the section	
moduli and web thicknesses of side frames are to be greater	moduli and web thicknesses of side frames are to be greater	
than or equal to the following values.	than or equal to the following values.	
$Z = 1.2 \frac{F_{SC} \ell_{1bdg}}{8\sigma_{Y}} \times 10^{3} (cm^{3}),$ $t_{w} = 2.0 \frac{0.5 F_{SC}}{d_{shr} \tau_{Y}} \times 10^{3} (mm)$	$Z = 1.2 \frac{F_{SC} \ell_{1bdg}}{8\sigma_Y} \times 10^3 (cm^3),$ $t_w = 2.0 \frac{0.5 F_{SC}}{d_{shr} \tau_Y} \times 10^3 (mm)$	
$t_w = 2.0 \frac{0.5 F_{SC}}{d_{Shr} \tau_Y} \times 10^3 (mm)$	$t_w = 2.0 \frac{0.5 F_{SC}}{d_{shr} \tau_Y} \times 10^3 (mm)$	
$\sigma_{\rm Y}$: Specified minimum yield stress (N/mm ²)	σ_Y : Specified minimum yield stress (N/mm^2)	
τ_Y : Allowable shear stress (N/mm^2)	τ_Y : Allowable shear stress (N/mm^2)	
$\sigma_Y/\sqrt{3}$	$\sigma_{\rm Y}/\sqrt{3}$	
F_{SC} : Load (kN) acting on the side frame according	F_{SC} : Load (kN) acting on the side frame according	
to 4.4.2.1-2	to 4.4.2.1-2	
ℓ_{1bdg} : Effective bending span (m) of the side frame.	ℓ_{1bdg} : Effective bending span (m) of the side frame.	
Where a bracket is provided, the end of the	Where a bracket is provided, the end of the	Modifies the definition
effective bending span is to be taken to the	effective bending span is to be taken to the	of effective bending span
position where the depth of the side frame and the	position where the depth of the side frame and the	as 6.4.3.2, Part 1.
bracket is equal to $1.5h_w$ (See Table 6.4.3-1,	bracket is equal to $2h_w$ (See Fig. 6.4.3-2, Part	

Amended	Original	Remarks
Part 1). d_{shr} : Effective shear depth (mm) of stiffener according to 3.6.4.2, Part 1	1). d_{shr} : Effective shear depth (mm) of stiffener according to 3.6.4.2, Part 1	
10.6 Ships Loaded with Heavy Cargoes on Upper Decks	(Newly Added)	
<u>10.6.1 General</u>	(Newly Added)	
 10.6.1.1 General For ships with B/D ≥ 2.5, the vertical wave bending moment and the vertical wave shear force specified in 4.3.2.3 and 4.3.2.4, Part 1 respectively are to be determined and are to be approved by the Society after being discussed beforehand. The upper deck plate, stiffener or its transverse web plate is to be suitably reinforced. In cases where heavy cargoes are carried on upper decks, effective means such as steel or wooden dunnage, etc. are to be provided so that weight is uniformly distributed onto the deck structure. 	(Newly Added)	Amendment (1) Specifies requirements for ships carrying heavy cargoes on upper deck, and also provides for a new notation"Heavy Deck Carrier".

Amended	Original	Remarks
		Kelliaiks
Part 2-6 VEHICLES CARRIERS AND	Part 2-6 VEHICLES CARRIERS AND	
ROLL-ON/ROLL-OFF SHIPS	ROLL-ON/ROLL-OFF SHIPS	
Chapter 6 LOCAL STRENGTH	Chapter 6 LOCAL STRENGTH	
*		
<u>6.2 Stiffeners</u>	(Newly Added)	Amendment (3)
		Clarifies the
		requirements related to
		side frames
<u>6.2.1 Side Frames</u>	(Newly Added)	~ .~
(211	(Noveley Added)	Specifies the substitution
6.2.1.1	(Newly Added)	of coefficients for
In applying 6.4.3.2, Part 1 to side frames in the cargo holds		vehicles carriers and Ro-
of vehicles carriers and ro-ro ships, rotation moment M_2 and		ro ships.
shear force F_2 at the lower end of the side frame due to		Being multiple-deck
double bottom bending need not be considered.		ships, the coefficient f_{bc}
		is set to 0.8 for the side
		frames on bottom layer
		and 1.0 for the other
		layers, which are
		considered fixed.
		(Specified in Part 1)
		In addition, rotation
		moment and shear force
		at the lower end of the
		side frames due to
		double bottom bending
		need not be considered

	or Survey and Construction of Steel Ships (2025 Amend	
Amended	Original	Remarks
Chapter 10 ADDITIONAL STRUCTURAL	Chapter 10 ADDITIONAL STRUCTURAL	
REQUIREMENTS	REQUIREMENTS	
TE QUITE (15	TEL CHENTENTS	
10.2 Movable Car Deck	10.2 Movable Car Deck	
10.2.1 Movable Car Deck Girders	10.2.1 Movable Car Deck Girders	
10.2.1.2 Strength Requirement*	10.2.1.2 Strength Requirement*	
2 The effective breadth of compressive plate flange for	2 The effective breadth of compressive plate flange for	
each girder is to be determined by the following (1) and (2)	each girder is to be determined by the following (1) and (2)	
corresponding to the stiffening direction of the panel.	corresponding to the stiffening direction of the panel.	
(1) Effective breadth for girders parallel to the stiffening	(1) Effective breadth for girders parallel to the stiffening	
direction:	direction:	
The value specified in 3.6.3, Part 1.	The value specified in 3.6.3, Part 1.	
(2) Effective breadth (b_{eft}) for girders crossing at right	(2) Effective breadth (b_{eft}) for girders crossing at right	
angles with the stiffening direction:	angles with the stiffening direction:	
$b_{eft} = \sum \left(\frac{C_{et} \cdot a}{2}\right) (mm)$	$b_{eft} = \sum \left(\frac{C_{et} \cdot a}{2}\right) (mm)$	
$\frac{1}{n}$ $($ Z $)$	$\frac{1}{n}$	
Where buckling stiffeners for deck plates are fitted	Where buckling stiffeners for deck plates are fitted	
properly, these may be taken into account for the	properly, these may be taken into account for the	
determination of effective breadth. However, it is	determination of effective breadth. However, it is	
not to exceed the value specified in 3.6.3, Part 1.	not to exceed the value specified in 3.6.3, Part 1.	Amendment (5)
C_{et} : Coefficient as given by the following formula	C_{et} : Coefficient as given by the following formula	Revises the coefficients
However, where it exceeds 1.0, it is to be taken	However, where it exceeds 1.0, it is to be taken	that take into account
as 1.0.	as 1.0.	strength reduction due to
(3 1.75)b (0.075 0.75)/.b	(3 1.75)b (0.075 0.75) (b)	buckling.
$C_{et} = \left(\frac{3}{\beta_1} - \frac{1.75}{\beta_1^2}\right) \frac{b}{a} + \left(\frac{0.075}{\beta} + \frac{0.75}{\beta^2}\right) \left(1 - \frac{b}{a}\right)$	$C_{et} = \left(\frac{3}{\beta} - \frac{1.75}{\beta^2}\right) \frac{b}{a} + \left(\frac{0.075}{\beta} + \frac{0.75}{\beta^2}\right) \left(1 - \frac{b}{a}\right)$	
n: 1 for girders located on the periphery of the car	n: 1 for girders located on the periphery of the car	Revises the formula
deck, and 2 for the others	deck, and 2 for the others	because it could result in

Amended	Amended Original			
a: Spacing (mm) of girders crossing at right angles with the stiffening direction	a:	Spacing (<i>mm</i>) of girders crossing at right angles with the stiffening direction	unreasonable values such as negative values	
b: Spacing (mm) of stiffeners $\beta_1 = \max(\beta, 2.21)$	<i>b</i> :	depending on the values of β and b/a .		
β : Coefficient determined as follows. $\beta = \frac{b}{t} \sqrt{\frac{\sigma_F}{E}}$ t: Thickness (mm) of car deck plating σ_F : Minimum upper yield stress or proof stress (N/mm²) of the car deck material E: Modulus of elasticity (N/mm²) of the material to be assumed equal to 2.06×10^5 for steel	β:	Coefficient determined as follows. $\beta = \frac{b}{t} \sqrt{\frac{\sigma_F}{E}}$ t : Thickness (mm) of car deck plating σ_F : Minimum upper yield stress or proof stress (N/mm²) of the car deck material E : Modulus of elasticity (N/mm²) of the material to be assumed equal to 2.06×10^5 for steel		

Amended	Original	Remarks
Part 2-9 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)	Part 2-9 SHIPS CARRYING LIQUEFIED GASES IN BULK (INDEPENDENT PRISMATIC TANKS TYPE A/B)	
Chapter 6 LOCAL STRENGTH	Chapter 6 LOCAL STRENGTH	
6.2 Stiffeners	(Newly Added)	
6.2.1 Side Frames	(Newly Added)	Amendment (3) Clarifies the requirements related to
6.2.1.1 In applying 6.4.3.2, Part 1 to side frames in cargo holds which can be empty due to multiport loading or other reasons, rotation moment M_2 and shear force F_2 at the lower end of the side frame due to double bottom bending need be considered.	(Newly Added)	side frames Specifies that rotation moment and shear force due to double bottom bending need be considered where cargo holds under consideration can be empty due to multiport loading, etc.

Amended	Original Original	Remarks
		Keillarks
Part 2-10 SHIPS CARRYING LIQUEFIED	Part 2-10 SHIPS CARRYING LIQUEFIED	
GASES IN BULK	GASES IN BULK	
(INDEPENDENT TANKS OF TYPE C)	(INDEPENDENT TANKS OF TYPE C)	
Chapter 1 GENERAL	Chapter 1 GENERAL	
Chapter 1 GEN (Extre	Chapter 1 GETTERE	
1.1 General	1.1 General	
	111 4 1 2	
1.1.1 Application	1.1.1 Application	A 1 (0)
1.1.1.2 Correspondence with Other Rules of the Society	(Newly Added)	Amendment (9)
	(Ivewly Added)	C
In applying 1.2.2.5, Part 1, relevant requirements specified		Specifies strength
in Part D and Part N are shown for reference.		assessment by cargo
		hold analysis for ships
		carrying liquefied gases
		in bulk (independent
		tanks of type C).

Amended		Original	Remarks
<u>Table 1</u>	.1.1-1 Correspondence with Other Par	ts of the Society's Rules	
<u>Structure</u>	<u>Item</u>	Relevant Parts. other than Part C	
Hull structures	Applications of steels	4.19.1, Part N and Chapter 6, Part N	
	General	4.23, Part N	
	Evaluation of loads due to flooding on ship	4.15.2, Part N	
	Strength of pressure vessels	10.5, Part D	
<u>Cargo tanks</u>	Sloshing evaluation (within allowable filling levels)	4.14.3, Part N	
	Thermal stress analysis (considering transient condition for cargo temperature below -55°C)	4.13.4, Part N	

	Amended	Original	Remarks
Chapte	er 4 LOADS	Chapter 4 LOADS	
4.1 General		4.1 General	
4.1.1 Overview		4.1.1 Overview	
Each section of requirements shown in each formula and each s	strength assessment to determine the	4.1.1.1 Structure and Overview of this Chapter Each section of this Chapter defines the requirements shown in Table 4.1.1-1 as the loads each formula and each strength assessment to dete scantlings specified in each Chapter of Part 2-10 are	additional sused for rmine the
	Table 4.1.1-1 Overv	view of Chapter 4	
Section	Title	Overview	
4.1 Gener	ral	Requirements for the general principles of Chapter 4	
4.2 Loads	s to be Considered in Local Strength	Additional requirements for loads to be considered for the local strength requirements specified in Chapter 6, Part 1.	
4.3 Loads	s to be Considered in Strength of Primary Supporti tures	Additional requirements for loads to be considered for the requirements of strength of primary supporting structures specified in Chapter 7 and Chapter 7, Part 1.	
44	s to be Considered in Strength Assessment by Cargo Analysis	Additional requirements for loads to be considered for the requirements of strength assessment by cargo hold analysis specified in Chapter 8 and Chapter 8, Part 1.	
4.1.2 Design Loa Considered 4.1.2.1	d Scenarios and Loads to be	(Newly Added)	

Amended	Original	Remarks
	Original	Remarks
and loads in the following (1) and (2) are to be considered in		
accordance with the requirements of this chapter:		
(1) 30-degree static heel condition: lateral loads due to		
seawater and cargo where the ship is heeled at 30		
degrees (Relevant requirements: 4.13.9, Part N)		
(2) Collision condition: Possible lateral loads due to		
seawater and cargo in the condition where the ship		
collides (Relevant requirements: 4.15.1, Part N)		
2 The design load scenarios specified in 14.5.2, Part		
N(hereinafter referred to as the "flooded condition(IGC)")		
may be considered when deemed appropriate by the Society.		
4.4 Loads to be Considered in Strength Assessment by	(Newly Added)	
Cargo Hold Analysis		
441 Commit	(N)l A J.J J\	
4.4.1 General	(Newly Added)	
4.4.1.1 General	(Newly Added)	
1 The loads to be considered in the strength assessment	(Iverily ridded)	
by the cargo hold analysis specified in Chapter 8 and		
Chapter 8, Part 1 are to be in accordance with 4.4.		
2 Additional requirements for loads in the maximum		
load condition are to be in accordance with 4.4.2.		
3 The loads in the harbour condition need not be		
considered.		
4 The loads in the 30-degree static heel condition are to		
be in accordance with 4.4.3.		
5 The loads in the collision condition are to be in		
accordance with 4.4.4.		
6 The loads in the flooded condition (IGC) are to be in		
accordance with 4.4.5.		
accordance with 4.4.5.		

(2		mended	or are Cor the Rules to	ar survey una		Original Original	our simps (Remarks
4.4.2.1 I 1 Load response of be conside conditions, e 2 On s specified in	Jaximum Load Loading Conditions each structure to appropriate except those residently with two conditions.	tions s which to be sign tely for tricted in argo hold re to be c	affect the structural nificantly assessed are to all possible loading the loading manual. Is, the loading conditions onsidered. On ships with	(Newly Add	,	J. Ignim.		
4.4.2-2 are 1	to be considere	d. Howe	ditions specified in Table ver, notwithstanding the					
conditions	on sea-going	in the	restricting the loading loading manual, the					
correspondir			y not be considered.		<i>(</i> 4 •		44	
	<u>Table 4.4.2-1</u>	l Loadin	g Conditions in Maximum	Load Condition	n (Ships y		rgo Hold)	(Newly Added)
	Loading condition ⁽¹⁾⁽²⁾		Loading pattern		Draught	Vertical still water bending moment Msy	Equivalent design wave	
			In the case of the foremos	st cargo hold		0.5M _{SV_max}	<u>HM-2/FM-2</u> <u>PCL-2</u>	
	Full load condition	<u>S1</u>	In the case of the aftmost	t cargo hold	T _{SC}	<u>Msv_min</u>	HM-1/FM-1 BR-1P/-1S BP-1P/-1S AV-1P/-1S PCL-1	

Amended		Original	Remarks
Ballast condition S2	In the case of the foremost cargo hold In the case of the aftmost cargo hold	M_{SV_max} $\frac{HM-2/FM-2}{PCL-2}$ T_{BAL} $0.5M_{SV_max}$ $\frac{HM-1/FM-1}{BR-1P/-1S}$ $\frac{BP-1P/-1S}{PCL-1}$	
condition. However, th may be used instead.	(m) around the x-axis, to be taken as 0.35B in the full le value calculated based on the weight distribution act is located in the cargo region, it is to be considered e	ecording to the loading condition to be considered	

	A	mended			Original			Remarks
<u>Ta</u>	Table 4.4.2-2 Loading Conditions in Maximum Load Condition (Ships v				Гhree or mor	e Cargo Hol	ds)	(Newly Added)
	Loading condition ⁽¹⁾⁽²⁾		Loading pattern	Draught	Vertical still water bending moment M _{SV} (3)	Equivalent design wave		
			In the case of the cargo hold in the midship part		0.5M _{SV_max}	<u>HM-2/FM-2</u> <u>PCL-2</u>		
	Full load condition	<u>S1</u>	In the case of the foremost cargo hold In the case of the aftmost cargo hold	T_{SC}	M _{SV_min}	HM-1/FM-1 BR-1P/-1S BP-1P/-1S AV-1P/-1S PCL-1		
	Ballast condition	<u>S2</u>	In the case of the cargo hold in the midship part	T_{BAL}	M _{SV_max} 0.5M _{SV_max}	HM-2/FM-2 PCL-2 HM-1/FM-1 BR-1P/-1S BP-1P/-1S		

Amend	ed ed	Original	Remarks
	In the case of the foremost cargo hold In the case of the aftmost cargo hold	PCL-1	
Condition loaded/unloaded in multiple ports	In the case of the cargo hold in the midship part In the case of the foremost cargo hold	<u>T_{MP=max}</u> <u>M_{SV_max}</u> <u>HM-2/FM-2</u> <u>PCL-2</u>	

mended	or are cor the Rules for Survey and		Original	our emps (- 0-0 1 111101110	Remarks
	In the case of the aftmost cargo hold					
<u>S4</u>	In the case of the cargo hold in the midship part In the case of the foremost cargo hold In the case of the aftmost cargo hold	T _{MP-min}	<u>Msv_min</u>	HM-1/FM-1 BR-1P/-1S BP-1P/-1S PCL-1		

Amended	Original	Remarks
: Liquid cargo : Ballast water		
(Notes) $T_{MP=max}$: Maximum draught (m) for loading conditions correst $T_{MP=min}$: Minimum draught (m) for loading conditions correst		
	0.35B in the full load condition, 0.40B in the ballast condition and the value calculated based on the weight distribution according to	
	vertical still water bending moment specified in the table, the at occurs after considering all possible physical combinations (such	
4.4.2.2 Wave Conditions Loads based on the equivalent design waves specified in Table 4.4.2-3 are to be additionally considered.	(Newly Added)	

(<i>F</i>	amena			rt C of the Rules fo	or Survey and Construction of Steel Ships (202	//
	Amended Original Table 4.4.2.2. Consent of Equivalent Design Ways					Remarks
,	<u>Table 4.4.2-3 Concept of Equivalent Design Wave</u>					(Newly Added)
		lent design vave	<u>Heading</u>		Typical features	
		<u>AV-1P</u>	Oblique sea	Port side: weather side up	Vertical acceleration at the centre of gravity of the cargo hold is its maximum value	
	(771)	<u>AV-2P</u>	Oblique sea	Port side: weather side down	Vertical acceleration at the centre of gravity of the cargo hold is its minimum value	
	$\underline{AV^{(1)}}$	<u>AV-1S</u>	Oblique sea	Starboard: weather side up	Vertical acceleration at the centre of gravity of the cargo hold is its maximum value	
		<u>AV-2S</u>	Oblique sea	Starboard: weather side down	Vertical acceleration at the centre of gravity of the cargo hold is its minimum value	
	D.C.I.	<u>PCL-1</u>	Head sea	Sagging condition	Hydrodynamic pressure at the centreline of the bottom is its minimum value	
	<u>PCL</u>	<u>PCL-2</u>	Head sea	Hogging condition	Hydrodynamic pressure at the centreline of the bottom is its maximum value	
	(1) The	wave AV is a	pplied where	the position of the centre of g	ravity of the cargo hold to be assessed is $0.6 \le x/LC$.	
for the equi	yalent o	.4, Part 1 design wa	, hydrodyr ves <i>AV</i> ar	namic pressure P_{exw} and PCL specified in	(Newly Added)	
In applyin with respect be considered	nternal g 4.6.2. to the e	Pressure 5, Part 1, quivalent	due to Los the acceles design way	aded Liquid ration at any position ves AV and PCL is to e in accordance with	(Newly Added)	
	Iull Gir oplying ment for	4.6.2.10, the loading	Part 1, the	e vertical still water in to be considered is	(Newly Added)	

(Amendment related to Part C of the Rules to	or Survey and Co		<u> </u>	2023 Ameno	
Amended		0:	riginal		Remarks
 2 In applying 4.6.2.10, Part 1, the coefficients C_{4p} and C_{4h} for equivalent design waves AV and PCL are to be in accordance with 4.3.2.6, Part 2-9. 4.4.3 30-degree Static Heel Condition 4.4.3.1 Loading Conditions The standard loading condition is to be in accordance with Table 4.4.3-1. 	(Newly Added				
Table 4.4.3-1 Loading Conditions for	r the 30-degree Sta	tic Heel Co	ndition_		(Newly Added)
Loading condition Loading pattern		<u>Draught</u>	Vertical bending moment		
In the case of the cargo hold in the mi In the case of the foremost cargo hold In the case of the aftmost cargo hold In the case of the aftmost cargo hold		T _{SC} .	<u>0</u>		
: As specified in Table 4.4.2-1.					
Note: As for ships whose hull structure and cargo tank structure are starboard down heel condition are to be considered.	asymmetrical, both the p	ort down heel c	condition and the		

Amended	Original	Remarks
4.4.3.2 Other Requirements other than those for the loading condition (wave conditions, external pressure, internal pressure and hull girder loads) are to be in accordance with 4.3.4, Part 2-9.	(Newly Added)	
4.4.4 Collision Condition	(Newly Added)	
4.4.4.1 Loading Conditions The standard loading condition is to be in accordance with Table 4.4.4-1.	(Newly Added)	

	lated to Part C of the Rules for Survey and C		riginal	Remarks
		(Newly Added)		
<u>Loading</u> <u>condition</u>	Loading pattern	Draught	Vertical bending moment	
Full load condition	In the case of the foremost cargo hold In the case of the aftmost cargo hold In the case of the aftmost cargo hold	T _{sc} .	<u>0</u>	
: As specified in	1 Table 4.4.2-1.			
(wave conditions, external pre-	those for the loading condition essure, internal pressure and hull	ed)		
girder loads) are to be in acco	ordance with 4.3.5, Part 2-9.			

	menamen	Ameno	ded to Part C of the Rules to	T Burvey and Cons		ginal	2023 I tilleli	Remarks
4.4.5.1 L		ditions		(Newly Added) (Newly Added)				
_		<u>T</u>	 able 4.4.5-1 Loading Condition	ns in Flooded Condition	ons (IGC)	_	(Newly Added)
	<u>Loading</u> condition		Loading pattern		Draught	Vertical bending moment		
	<u>-</u>	FLI1	In the case of the cargo hold in the mids In the case of the foremost cargo hold In the case of the aftmost cargo hold In the case of the aftmost cargo hold	hip part	T_{sum}	<u>0</u>		

Amended	Original	Remarks
T_{sum} : Draught (m) , as specified in 4.15.2, Part N. \blacksquare : Seawater		
4.4.5.2 Others Requirements other than those for the loading condition (wave conditions, external pressure, internal pressure and hull girder loads) are to be in accordance with 4.3.6, Part 2-9.	(Newly Added)	
Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	
8.1 General	8.1 General	
8.1.1 <u>Overview</u>	8.1.1 Application	
8.1.1.1 Structure and Overview of this Chapter 1 This chapter specifies additional requirements related to strength assessment by cargo hold analysis for liquified gas bulk carriers with independent tanks of type C. 2 The structure and overview of this chapter are shown in Table 8.1.1-1.	8.1.1.1 Ships corresponding to 8.1.2.1-1(2), Part 1 are to be ships having a cargo hold with a length of 30 m or more.	

(Am	endment	related to Part C of the Rules	for Survey and Construction of Steel Ships (2025 Amen	ament 1))		
		Amended	Original	Remarks		
	<u>Table 8.1.1-1 Overview of Chapter 8</u>					
	Section	<u>Titles</u>	<u>Abstracts</u>			
	<u>8.1</u>	General	Requirements related to the overview and application of this chapter			
	8.2	Evaluation Areas and Members to be Assessed	Additional requirements related to evaluation area and members to be assessed			
	<u>8.3</u>	Structural Models	Additional requirements related to structural models			
	<u>8.4</u>	Boundary Conditions and Loads Conditions	Additional requirements related to the boundary conditions and loads conditions			
	<u>8.5</u>	Strength Assessment	Additional requirements related to strength criteria			
8.1.2.1 Ship Ships corresp		ssessed 8.1.2.1-1(2), Part 1 are to be ships a length of 30 m or more.	tank structures may not be assessed.			
(Deleted)			8.1.3 Structural Models			
(Deleted)			8.1.3.1 Members to be Modelled In applying 8.3.1.2, Part 1, the cargo tank structures and the cargo tank supporting structures are to be modelled appropriately.			
(Deleted)			8.1.3.2 Properties of Elements In applying 8.3.2.2, Part 1, where the equipment such as cargo pumps or pipes and insulation are not modelled, the density of material at locations where the cargo tank structures are modelled is to be adjusted in consideration of their weight.			

Amended	Original	Remarks
8.2 Evaluation Area and Members to be Assessed	(Newly Added)	TOHIMINO
5.2 Dyununion file a ma fremoets to be fissessed	(Howly Haded)	
8.2.1 Members to be Assessed	(Newly Added)	
9211 Mambaus to be Assessed in Marinnyn Load	(Navyly, Addad)	
8.2.1.1 Members to be Assessed in Maximum Load Condition and Testing Condition	(Newly Added)	
In applying 8.2.2.1, Part 1, the structures and members to		
be assessed are as follows:		
(1) Double bottom structure (bottom shell, inner bottom		
plating, centre girder, side girder and floor) or single		
bottom structure		
(2) Double-side shell structure (side shell, longitudinal		
bulkhead, side stringer and side transverse) or single		
side shell structure		
(3) Deck structure (upper deck, deck transverse, and		
hatch coaming)		
(4) Bulkhead structure (5) Supporting structures of cargo tank (cargo tank		
(5) Supporting structures of cargo tank (cargo tank structure is excluded)		
(6) Other locations deemed necessary by the Society		
(b) Other locations declined necessary by the society		
8.2.1.2 Members to be Assessed in 30-degree Static	(Newly Added)	
Heel Condition		
In the 30-degree static heel condition, supporting structures		
of cargo tanks (excluding cargo tank structures) and their		
surrounding hull structures are to be assessed.		
8.2.1.3 Members to be Assessed in Collision Condition	(Newly Added)	
In the collision condition, supporting structures of cargo	(11011) 12000)	
tanks (excluding cargo tank structures) and their surrounding		
hull structures are to be assessed. Where, as the standard, the		
surrounding hull structures include one transverse spacing in		

Amended	Original	Remarks
the longitudinal direction from the supporting structures. 8.2.1.4 Members to be Assessed in Flooded Condition (IGC) In strength assessments based on the flooded condition (IGC), the members to be assessed are to be at the discretion	(Newly Added)	
of the Society. 8.3 Structure Models	(Newly Added)	
8.3.1 Extent of Models and Members to be Modelled	(Newly Added)	
8.3.1.1 Extent of Models In applying 8.3.1.1, Part 1 to ships with two cargo holds, the extent of models is to be in accordance with 8.3.1.1-4, Part 1.	(Newly Added)	
8.3.1.2 Members to be Modelled 1 In applying 8.3.1.2, Part 1, cargo tank structures (hull envelope, stiffening rings, swash bulkheads, etc.) and associated supporting structures are to be modelled appropriately. 2 In applying 8.3.3.1, small members are to be modelled so as to reproduce the actual construction as much as possible.	(Newly Added)	
8.3.2 Elements	(Newly Added)	
8.3.2.1 Properties of Elements In applying 8.3.2.2, Part 1, when equipment such as cargo pumps, piping, etc. and insulation are not modelled, the density of the materials is to be adjusted in consideration of	(Newly Added)	

Amended	Original	Remarks
their weight in areas where cargo tank structures are modelled.		
8.3.2.2 Element Types	(Newly Added)	
1 In applying 8.3.2.1, Part 1, webs and coamings of		
supporting structures of cargo tanks are to be modelled with		
shell elements.		
2 Stiffeners in the range where the mesh size specified		
in 8.3.3.1 is used are to be modelled with shell elements.		
Flanges of primary supporting members and flanges of		
brackets are to be modelled with shell elements. The bearing blocks inserted in the contact surfaces of		
3 The bearing blocks inserted in the contact surfaces of cargo tanks and any associated supporting structures are to be		
modelled using the elements in which analysis taking contacts		
and frictions occurring on the contact surface into account can		
be carried out appropriately.		
ov curried out appropriatery.		
8.3.3 Meshing and Related Issues	(Newly Added)	
8.3.3.1 Supporting Structures of Cargo Tank	(Newly Added)	
1 In applying 8.3.3.1-2, Part 1, the supporting structures		
of cargo tanks and the surrounding structures in the holds to		
be considered are to be reproduced with a mesh size of no		
larger than $50 mm \times 50 mm$. The surrounding structures are, in principle, ten elements from the supporting structures.		
2 In applying 1 above, mesh size is to change smoothly		
between the modelled areas with typical mesh sizes being as		
specified in 8.3.3.1-1, Part 1.		
3 In applying 1 above, openings in the supporting		
structures of cargo tanks are to be modelled either by		
reproducing the shape or by removing elements corresponding		
to their position and size.		

Amended	Original	Remarks
8.3.4 Other	(Newly Added)	
8.3.4.1 Contacts and Frictions In areas of cargo tanks and their supporting structures, contacts and frictions are to be taken into account in accordance with 8.3.4, Part 2-9.	(Newly Added)	
8.4 Boundary Conditions and Load Conditions	(Newly Added)	
8.4.1 Boundary Conditions	(Newly Added)	
8.4.1.1 In applying 8.5.1, Part 1, boundary conditions are to be in accordance with 8.4.1, Part 2-8.	(Newly Added)	
8.4.2 Load Conditions	(Newly Added)	
8.4.2.1 Load to be Considered In applying 8.5.2, Part 1, loads based on the additional requirements specified in 4.4 are to be considered.	(Newly Added)	
8.4.2.2 Method of Applying Moments to the Structural Model In applying 8.5.2, Part 1, the method of applying moments is to be in accordance with 8.4.2, Part 2-8.	(Newly Added)	

Amended	Original	Remarks
8.5 Strength Assessment	(Newly Added)	
8.5.1 Yield Strength Assessment	(Newly Added)	
8.5.1.1 Criteria for Typical Mesh Size	(Newly Added)	
1 Yield strength assessments in the range of typical	(Newly Added)	
mesh sizes specified in 8.3.3.1-1, Part 1 are to be in		
accordance with 8.6.1, Part 1.		
2 In the 30-degree static heel condition, the permissible		
utilisation factor λ_{vnerm} is to be taken as 1.0.		
3 In the collision condition and flooded condition		
(IGC), the permissible utilisation factor λ_{yperm} is to be in		
accordance with the following formulae.		
$\lambda_y \leq \lambda_{perm}$		
λ_y : Yield utilisation factor, as given by the following		
formula. In the case of rod elements or beam		
elements, σ_{eq} is to be substituted to σ_a .		
$\lambda_{\mathcal{Y}} = \frac{\sigma_{eq}}{\sigma_{eq}}$		
$\frac{\kappa_Y}{\sigma_Y} = \sigma_Y$		
λ_{nerm} : Permissible utilisation factor, to be taken as		
1.0.		
8.5.1.2 Criteria for Areas Modelled with Finer Mesh	(Newly Added)	
Size		
1 Criteria of yield strength assessment for areas where		
the mesh size specified in 8.3.3.1 is applied are to be in accordance with the following formula, except for stress		
concentrations. The average value of the stresses of the		
elements in the range of the typical mesh size specified in		
8.3.3.1, Part 1 may be used. However, it is not to be averaged		
beyond different structures and structural discontinuous parts.		

	or Survey and Construction of Steel Ships (2025 Amend	
Amended	Original	Remarks
$\underline{\lambda_y \leq \lambda_{perm}}$		
$\lambda_{\rm v}$: Yield utilisation factor, as given by the following		
formula.		
σ_{eq}		
$\lambda_y = \frac{\sigma_{eq}}{235/K}$		
λ_{nerm} : Permissible utilisation factor, to be taken as		
1.0.		
2 In the case of stress concentration, yield strength		
assessment is to be carried out in accordance with the		
following criteria		
$\lambda_y \leq \lambda_{perm}$		
λ_y : Yield utilisation factor, as given by the		
<u>following.</u>		
(1) Hull structures in design load scenarios other than		
collision condition and flooded condition (IGC)		
$\lambda_{y} = \frac{\sigma_{eq}}{C_{fa}C_{m} \cdot 235/K}$		
$C_{fa}C_m \cdot 235/K$		
$\underline{C_{fa}}$: Coefficient for fatigue, taken as 1.0.		
\underline{C}_m : Coefficient, taken as 1.7 for elements that		
do not come into contact with welding and 1.5		
for elements that come into contact with		
welding.		
(2) Supporting structures of cargo tanks in design load		
scenarios other than the collision condition and		
flooded condition (IGC)		
$\lambda_y = rac{\sigma_{eq}}{C_{fa}C_m\sigma_Y}$		
C_{fa} , C_m : As specified in (1) above		
(3) In the collision condition and flooded condition (IGC)		

Amended	Original	Remarks
$\lambda_{y} = \frac{\sigma_{eq}}{1.87\sigma_{Y}}$		
8.5.2 Buckling Strength Assessment	(Newly Added)	
<u>8.5.2.1 Criteria</u>	(Newly Added)	
The permissible buckling usage factor η_{all} for the 30-		
degree static heel condition and collision condition is to be		
<u>taken as 1.0.</u>		

Amended	Original	Remarks
RULES FOR HIGH SPEED CRAFT	RULES FOR HIGH SPEED CRAFT	
Part 1 GENERAL RULES	Part 1 GENERAL RULES	
Chapter 1 GENERAL	Chapter 1 GENERAL	
1.2 Class Notations	1.2 Class Notations	
1.2.4 Hull Construction and Equipment, etc.	1.2.4 Hull Construction and Equipment, etc.	
7 Craft complying with the requirements of Part GF of	7 Craft complying with the requirements of Part GF of	Modifies the reference.
the Rules for the Survey and Construction of Steel Ships	the Rules for the Survey and Construction of Steel Ships	
applied in accordance with the requirements of 1.1.8 are to	applied in accordance with the requirements of 1.1.8 are to	
be in accordance with the requirements of 1.2.4-33, Part A of	be in accordance with the requirements of 1.2.4-32, Part A of	
the Rules for the Survey and Construction of Steel Ships.	the Rules for the Survey and Construction of Steel Ships.	

Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF PASSENGER SHIPS	CONSTRUCTION OF PASSENGER SHIPS	
Part 1 GENERAL	Part 1 GENERAL	
Chapter 1 GENERAL	Chapter 1 GENERAL	
1.2 Class Notations	1.2 Class Notations	
1.2.4 Hull Construction and Equipment, etc.* 7 Ships complying with the requirements of Part GF of the Rules for the Survey and Construction of Steel Ships applied in accordance with the requirements of 1.1.6 are to be in accordance with the requirements of 1.2.4-33, Part A of the Rules for the Survey and Construction of Steel Ships.	1.2.4 Hull Construction and Equipment, etc.* 7 Ships complying with the requirements of Part GF of the Rules for the Survey and Construction of Steel Ships applied in accordance with the requirements of 1.1.6 are to be in accordance with the requirements of 1.2.4-32, Part A of the Rules for the Survey and Construction of Steel Ships.	Modifies the reference.

Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF INLAND WATERWAY	CONSTRUCTION OF INLAND WATERWAY	
SHIPS	SHIPS	
Part 1 GENERAL RULES	Part 1 GENERAL RULES	
Chapter 1 GENERAL	Chapter 1 GENERAL	
1.2 Class Notations	1.2 Class Notations	
1.2.3 Hull Construction and Equipment 5 Ships complying with the requirements of Part GF of the Rules for the Survey and Construction of Steel Ships applied in accordance with the requirements of 1.1.8 are to be in accordance with the requirements of 1.2.4-33, Part A of the Rules for the Survey and Construction of Steel Ships.	1.2.3 Hull Construction and Equipment 5 Ships complying with the requirements of Part GF of the Rules for the Survey and Construction of Steel Ships applied in accordance with the requirements of 1.1.8 are to be in accordance with the requirements of 1.2.4-32, Part A of the Rules for the Survey and Construction of Steel Ships.	Modifies the reference.

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment 1))				
Amended	Original	Remarks		
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND			
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS			
Part A GENERAL RULES	Part A GENERAL RULES			
TAITA GENERAL RULES	TAILA GENERAL RULES			
A1 CENEDAL	A1 CENEDAL			
A1 GENERAL	A1 GENERAL			
A1.2 Class Notations	A1.2 Class Notations			
A1.2.4 Hull Construction and Equipment	A1.2.4 Hull Construction and Equipment			
3 For ships complying with the provisions of 1.2.4-1, -	3 For ships complying with the provisions of 1.2.4-1, -	Modifies the references.		
2, -3, and -29, Part A of the Rules that are designed for the	2, -3, and <u>-28</u> , Part A of the Rules that are designed for the			
carriage of specific cargoes, the details are to be entered as	carriage of specific cargoes, the details are to be entered as			
descriptive notes in the Classification Register for the ship.	descriptive notes in the Classification Register for the ship.			
5 With respect to the provisions of $1.2.4-\underline{15}$ and $-\underline{16}$,	5 With respect to the provisions of $1.2.4-\underline{14}$ and $-\underline{15}$,			
Part A of the Rules, design criteria such as water depth and	Part A of the Rules, design criteria such as water depth and			
wave height are to be entered into the Classification Register	wave height are to be entered into the Classification Register			
as descriptive notes for the ship.	as descriptive notes for the ship.			
6 With respect to the provisions of 1.2.4-18, Part A of	6 With respect to the provisions of 1.2.4-17, Part A of			
the Rules, design conditions such as maximum diving depth	the Rules, design conditions such as maximum diving depth			
are to be entered in the Classification Register as descriptive	are to be entered in the Classification Register as descriptive			
notes for the ship.	notes for the ship.			
7 For ships complying with the provisions of 1.2.4-7 and	7 For ships complying with the provisions of 1.2.4-7 and			
1.2.4-26, Part A of the Rules, the notation "GRAB" is to be	1.2.4-25, Part A of the Rules, the notation "GRAB" is to be			
affixed as in the following example: "BC-XII, GRAB"	affixed as in the following example: "BC-XII, GRAB"			
8 In applying 1.2.4-33, Part A of the Rules, the kinds of	8 In applying 1.2.4-32, Part A of the Rules, the kinds of			
fuels are listed as follows:	fuels are listed as follows:			
(1) Natural gas used as fuel: "Gas or Low-flashpoint Fuel	(1) Natural gas used as fuel: "Gas or Low-flashpoint Fuel			

	Amended		Original	Remarks
	/ Natural Gas" (abbreviated as GLF/NG)		/ Natural Gas" (abbreviated as GLF/NG)	
(2)	Others than (1) above used as fuel: According to	(2)	Others than (1) above used as fuel: According to	
	"Guidelines for Ships Using Alternative Fuels"		"Guidelines for Ships Using Alternative Fuels"	
9	In applying 1.2.4-34, Part A of the Rules, the kinds of	9	In applying 1.2.4-33, Part A of the Rules, the kinds of	
fuels 1	isted as follows:	fuels 1	isted as follows:	
(1)	Natural gas used as fuel: "Cargo as Fuel / Natural	(1)	Natural gas used as fuel: "Cargo as Fuel / Natural	
	Gas" (abbreviated as CF/NG)		Gas" (abbreviated as CF/NG)	
(2)	Others than (1) above used as fuel: According to	(2)	Others than (1) above used as fuel: According to	
	"Guidelines for Ships Using Alternative Fuels"		"Guidelines for Ships Using Alternative Fuels"	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment 1))

Amended	Original Original	Remarks
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part C HULL CONSTRUCTION AND EQUIPMENT	Part C HULL CONSTRUCTION AND EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
C7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES	C7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES	
C7.2 Simple Girders	C7.2 Simple Girders	
C7.2.2 Strength Assessment	C7.2.2 Strength Assessment	
C7.2.2.1 General	C7.2.2.1 General	
1 In applying 7.2.2.1-1, Part 1, Part C of the Rules to	In applying 7.2.2.1-1, Part 1, Part C of the Rules to web	
web frames, moments and shear forces are to be in accordance	frames, moments and shear forces are to be in accordance with	
with Table C7.2.2-1.	Table C7.2.2-1.	
2 Cantilever beams are to comply with the following (1) and (2):		Transferred from 7.2.6.1,
(1) The depths of the cantilever beams may be gradually		Part 1, Part C of the
tapered down towards their inboard ends from the toes		Rules.
of the end brackets and may be reduced to 1/2 of the		
depth at the toe of the end bracket. (2) The sectional areas of face plates may be gradually		
(2) The sectional areas of face plates may be gradually		

Amended	Original	Remarks
tapered down from the toes of the end brackets toward	-	
the inboard end of the cantilever beams and may be		
reduced to 0.60 times that at the toe of the end bracket.		
C7.4 Pillars, Struts, Etc.	(Newly Added)	
C7.4.2 Scantling Requirements	(Newly Added)	
	(Newly Added)	Amendment (8)
C7.4.2.1 Buckling Strength Requirements (Euler		Clarification of loads to
Buckling)		be used in buckling
In applying 7.4.2.1, Part 1, Part C of the Rules, where		strength assessment of
pillars are subject to strength assessment, the following (1) and		pillars
(2) are to be applied as the standard.		
(1) The area of deck load or green sea load supported by		Specify the methods for
the pillar is to be determined by the following		calculating the area of
formula:		deck load or green sea
$Sb(m^2)$		load supported by a pillar
S: Distance (m) between the mid-points of two		and the loads transmitted
adjacent spans of girders supported by pillars,		from upper tween deck
bulkhead stiffeners or bulkhead girders (See Fig.		pillars to the pillar under
<u>C7.4.2-1)</u>		assessment in the
b: Mean distance (m) between the mid-points of two		guidance as a reference.
adjacent spans of beams supported by the pillars		
or the frames (See Fig. C7.4.2-1)		
(2) The loads transmitted from upper tween deck pillars		
to the pillar under assessment are to be calculated by		
the following formula. However, this is based on the assumption that the arrangement of the pillars in the		
longitudinal section is continuous and equally spaced		
in the transverse direction.		
in the transverse uncerton.		

	or Survey and Construction of Steel Snips (2025 Amen	
Amended	Original	Remarks
$\frac{k_0w_0(kN)}{k_0: \text{ The value is to be calculated by the following}}$ formula, depending on the horizontal distance a_i (m) from the pillar to the tween deck pillar above, and the span $l_i(m)$ of girder supporting the tween deck pillar or bulkhead (See Fig. C7.4.2-1). $2\left(\frac{a_i}{l_j}\right)^3 - 3\left(\frac{a_i}{l_j}\right)^2 + 1$ $w_0: \text{Load } (kN) \text{ supported by the upper tween deck pillar}$ $Fig.C7.4.2-1 \text{ Meas}$	surement of S, b, etc.	(Newly Added)
	Bulkhead	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2025 Amendment 1))				
Amended	Original	Remarks		
C8.3.3 Meshing and Related Issues	C8.3.3 Meshing and Related Issues	A 1 (0)		
C8.3.3.5Local Models	C8.3.3.5Local Models	Amendment (8)		
1 In the application of the 8.3.3.5, Part 1, Part C of the	1 In the application of the 8.3.3.5, Part C of the Rules,	Specifies criteria when		
Rules, the region to be modelled by a fine mesh is to be	the region to be modelled by a fine mesh is to be determined	opting to assess stress		
determined so as to obtain the appropriate structural response	so as to obtain the appropriate structural response in the	concentration areas		
in the assessment target region of the local model. The	assessment target region of the local model. The boundary of			
boundary of the local model is to coincide with the primary	the local model is to coincide with the primary supporting			
supporting member of the model reproducing the cargo hold.	member of the model reproducing the cargo hold.			
2 In applying 8.3.3.5-1, Part 1, Part C of the Rules,	member of the model reproducing the eargo note.			
meshing for the assessment of stress concentration areas is to				
be in accordance with the following (1) to (3).				
(1) The standard mesh size in area to be assessed and its				
vicinity is to be 50 mm× 50 mm or less.				
(2) For at least ten elements in all directions from the				
locations to be assessed, (1) above is to be followed.				
(3) Members and small openings expected to affect the				
structural response of the locations to be assessed are				
to be modelled. Small brackets and face plates				
attached to the brackets are also to be modelled within				
the range of the meshing of 50 mm size specified in				
(1) above.				
<u>3</u> In the application of the 8.3.3.5-3, <u>Part 1</u> , Part C of	<u>2</u> In the application of the 8.3.3.5-3, Part C of the			
the Rules, nodal displacements obtained from the analysis	Rules, nodal displacements obtained from the analysis results			
results using the structural model reproducing the cargo hold	using the structural model reproducing the cargo hold is to be			
is to be applied to the nodes at the boundary of the local model.	applied to the nodes at the boundary of the local model. Where			
Where the nodes the boundary nodal points of the local model	the nodes the boundary nodal points of the local model are not			
are not in agreement with the corresponding nodal points of	in agreement with the corresponding nodal points of the model			
the model reproducing the cargo hold, it is acceptable to	reproducing the cargo hold, it is acceptable to impose			
impose prescribed displacement on these nodes using multi-	prescribed displacement on these nodes using multi-point			
point constraints.	constraints.			

Amended Amended Original Remarks				
Amended	Original CO CC 41 A	Remarks		
C8.6 Strength Assessment	C8.6 Strength Assessment			
C8.6.1 Yield Strength Assessment	(Newly Added)			
Co.o.1 Tield Strength Assessment	(richly riducu)			
C8.6.1.2 General	(Newly Added)			
The "deemed appropriate by the Society" referred to in		Amendment (8)		
8.6.1.2-2, Part 1, Part C of the Rules means the stress		Specifies criteria when		
obtained through analysis using the mesh specified in		opting to assess stress		
C8.3.3.5-2 is to comply with the following criteria.		concentration areas		
(1) For meshing for 50 mm×50 mm size, the criteria are				
as follows:				
$\lambda_f \leq \lambda_{fperm}$				
λ_f : Yield utilisation factor, given as follows.				
$\lambda_f = \frac{\sigma_{eq}}{C_{fa}C_m \cdot 235/K}$				
σ_{eq} : Reference stress, as specified in				
8.6.1.1, Part 1, Part C of the Rules.				
$\underline{C_{fa}}$: Coefficient for fatigue, taken as 1.0.				
However, taken as 1.2 for structures				
that satisfy the criteria for fatigue				
strength assessment specified in				
Chapter 9, Part 1, Part C of the				
Rules.				
C_m : As specified in Table 8.6.1-1.				
λ_{fperm} : Permissible yield utilisation factor, taken as				
$\frac{1.0.}{1.0}$				
(2) When using a mesh finer than the mesh of $50 \text{ mm} \times 50$				
mm, the value obtained by averaging the stresses of				
multiple elements may be used as the reference stress				
within the range corresponding to the mesh of 50 mm				

Amended Amended			Original	Remarks
× 50 <i>mm</i> .				
<u>Tabl</u>	e 8.6.1-1 Value o	$f C_m$		
	Element not adjacent	Element adjacent to		
26 : 1 1	to weld	weld		
Maximum load condition	<u>1.70</u>	<u>1.50</u>		
Other than those mentioned	<u>1.36</u>	1.20		
above	1.30	1.20		
		EFFECTIVE DA	ΓE AND APPLICATION	
	e of this amendme	•		
	•	ts, the current requir	ements apply to ships for which the date of contract for construction	
is before the				
	-	of preceding 2., the ive date upon reques	amendments may apply to ships for which the date of contract for sts.	
			ey and Construction of Steel Ships and the Guidance for the Survey	
	,		ensive revision by Rule No.62 on 1 July 2022 and Notice No.47 on	
	-	-	of the Rules" and "old Part C of the Guidance"), and which the date	
,			ctive date, this amendment also applies to following requirements.	
	7.2, old Part C of t			
15.4.1, old Part C of the Guidance				
	3, Annex C32.2.8-			