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1. INTRODUCTION

In ship design, highly accurate estimation of ship motion in waves is demanded from various viewpoints, including the safety
and riding comfort of the crew, wave loads for hull structural design, added resistance in waves in propulsive performance, etc.
Rational estimation of ship motion in waves is now possible by seakeeping analysis tools such as the strip method or 3D panel
method, and these tools have been provided for practical use at design work sites. On the other hand, there is also high demand
for estimation of ship motion by a simple method which does not rely on numerical analysis. For example, in estimation of wave
loads for evaluation of structural strength, performing wave load analyses for individual ships would be a significant obstacle
in terms of the workload required in hull structural design. Therefore, CSR (Common Structural Rules) Y, which is a set of rules
for steel ships, provides a method for estimating wave loads by simplified formulae using the main parameters of the ship. For
the same reason, the intact stability criteria (International Code on Intact Stability: IS Code) ? established by the IMO requires
evaluation of safety based on the effective wave slope coefficient and damping force in rolling motion obtained by a simplified
estimation method.

Generally speaking, a tradeoff relationship exists between the “simplicity” of simplified estimation methods and their
“estimation accuracy and range of applicability.” If a formula is developed by fitting to lots of the results of calculations, it is
difficult to guarantee accuracy for targets that deviate from the used sample data. For example, the formulae for ship motion
and acceleration provided in the current CSR ) were derived by fitting to calculations for bulkers and oil tankers, and although
the formulae are simple, they are not suitable to apply for untargeted ship types and sizes. Conversely, because the estimation
formula for the effective wave slope coefficient provided in the IS Code ? requires shape information for each transverse section
of the hull, it is a strict method with high accuracy but lacks simplicity. In contrast to these two approaches, the authors believe
that it is possible to satisfy both “simplicity” and “accuracy and applicability” by a process of identifying the dominant factors
based on physical consideration, investigating their effects.

With this background, in the present research, the authors developed simplified formulae for the linear Froude-Krylov force
based on a physical consideration to enable simple estimation of the ship motion in waves of a monohull ship of any arbitrary
ship type and size. Although the work by Jensen et al. ¥ is an example of past research for a similar purpose, that method was
based on a formulation based on strip theory for a box-shaped ship with uniform dimensions of L x B x d, and the influence of
the fineness of the ship geometry is considered by coefficient processing so as to fit several ships. In contrast, in the present
research, we developed formulae that consider hull-form parameters of a ship such as the principal -particulars and fineness
coefficients to enable application to all ship types from fine to blunt hull types. The estimation accuracy of the developed
formulae was validated by calculation and comparison of the Froude-Krylov forces for various wave directions and wave lengths
by a linear 3-dimensional seakeeping program using the actual hull-forms of 77 ships under 2 loading conditions (full load,
ballast).

This paper is limited to the development of formulae for the Froude-Krylov force. However, because the Froude-Krylov force
accounts for the main components of hydrodynamic forces that act on a ship, expressing those components by explicit formulae
has a complete significance in itself. Its importance varies depending on the mode of motion, as the Froude-Krylov force is the
principal component which becomes the leading term in the long wave length region * ¥, while radiation and scattering
hydrodynamic forces are also important in the wave length region where motion is large. In contrast to this, it is known that the
Froude-Krylov force is particularly dominant for ship motion under roll and surge conditions. Where roll is concerned, because

the scattering hydrodynamic force and the sway-induced radiation hydrodynamic force have a mutually-canceling effect,
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accurate estimation is possible by an equation of motion with one degree of freedom (DOF) using only the Froude-Krylov
moment in the wave exciting force ® 7. This concept has also been adopted in the IS Code 2. Surge can be estimated
approximately from the Froude-Krylov force and hull weight because the fore and aft parts of ships are slender and elongated,
and this calculation method has been adopted in many strip methods which do not consider the ship longitudinal component of
the hull surface normal vector . The simplified formulae of the Froude-Krylov forces proposed in this paper are considered to

be particularly effective for use in simplified estimations of these motions.
2. DEFINITIONS

2.1 Hull-Form Parameters Used in Formulae

Eight hull-form parameters are used in the formulae in this paper: the ship length L (length between perpendiculars, Lpp),
breadth B, mean draft d, block coefficient C, (=V/LBd: where V means displaced volume), waterplane area coefficient C, (=
Aw/LB: where 4w means the waterplane area), midship section area coefficient C,,. height of the center of gravity from keel KG
and the longitudinal center of floatation using the center of gravity as the reference point xr (= (longitudinal center of floatation
LCF) — (longitudinal center of gravity LCG)). xris defined by Eq. (18) in the following. In this paper, the prismatic coefficient
Cp (= Cv/Cy) and the vertical prismatic coefficient C,, (= Co/Cy) are used where appropriate. In addition, formulae were also
developed for cases where the longitudinal metacentric height GM; and the transverse metacentric height GM (defined by Eqs.
(19) and (20) in the following) are used.
2.2 Coordinate System and Incident Wave

The definitions of the coordinate system and the directions of motions are shown in Fig. 1. The origins of the x, y, z coordinates
are taken at the longitudinal center of gravity LCG, the centerline and the height of the waterline, respectively.

In this paper, the frequency response in regular waves was assumed based on linear theory and is expressed by the complex

amplitude. That is, the amounts a(7) of periodic variation are all handled by the complex number 4 defined by the following Eq.

(1).

a(t) = R[Ae'wet]
= R[A] cos w,t — I[A] sin w,t )
= |A| cos(w,t + arg(A4))

Where, w, is frequency of wave of encounter (frequency of encounter), and R[A], J[A], |A|, arg(A) are the real part,
imaginary part, amplitude and argument of the complex number A, respectively.
The incident wave is defined as shown on the right in Fig. 1, and its velocity potential ¢¢ is expressed as follows, assuming

the instant when the crest of the wave reaches the position of the ship’s center of gravity as the time reference (# = 0).

¢0 4 %ekz—ik(xcosﬂ+y sin ) (2)

Where, g, {, , k(= w?/g), B are acceleration of gravity, and the wave amplitude, wave frequency, wave number and
wave direction of the incident wave. In the following, the unit velocity potential shown below, which is nondimensionalized by

w/ig{,, will be used.

0o = ekz—ik(x cos f+ysinB) (3)
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Figure 1 Definitions of coordinate system, motion and incident wave

2.3 Definition of Froude-Krylov Force and Asymptotic Value of Long Wave Length Region

The linear Froude-Krylov force is defined by the following equation as the integral of the velocity potential of the incident

wave on the surface Sy of the ship’s hull below the waterline.

Ef* = —pgl, J ponidS (i =1~6) )
S

H

EF¥(i =1 to 6) are the Froude-Krylov forces in the surge, sway, heave, roll. pitch and yaw directions. respectively. When
the basic flow field is approximated as a uniform flow, the definition in Eq. (4) holds independent of the ship’s advance speed,
and the influence of the advance speed is expressed only in the frequency of encounter w,. In Eq. (4), p is the density of
seawater, and n; (i =1 to 6) represents the extension of the outward-facing unit normal vector {nx,ny,nz}’r of the hull

surface to 6 degrees of freedom (around the center of gravity) as defined by the following Eq. (5).

Ny (i=1)
n, (i=2)
n, (i=3)
ME g~ (z—zemy, (=4 )
(z — zg)n, — xn, (i=5)
XNy, — yny (i=6)

Where, z¢ is the z coordinate of the center of gravity (z¢ = KG — d). In addition, the Froude-Krylov force in the surge, sway,
heave and roll directions acting on a transverse section of a unit thickness (hereinafter referred to as “section Froude-Krylov
force”) is defined as shown by the following equation as the integral on the outer periphery Cy (x) of the transverse section of
the hull.

FFKG0) = —pgla f gomidl (i = 1~4) ©

Ch(x)

At this time, Ef¥ is expressed as follows using f;7% (x).

f foiF" (x)dx (i = 1~4)

XA

B =[x eoar @=9) ”

XA

f xefz"" (x)dx (i=6)

XA

Where, x,,xp are the x coordinates of A.P. and E.P., respectively. In E£¥, EEX of Eq. (7). the influence of the terms caused
by #, is considered to be negligibly small.
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In the following, the Froude-Krylov force is nondimensionalized as follows, where the nondimensionalized quantity is

indicated by an overbar.

EFK — i (i = 1~6)
' pgSaLBs;
— R0
.FK = l— | — 2~4
fim (o PYgSaBe; G )

Here, &; is the representative length, which is defined as follows:

1 (i =1~3)
g=4 B (i=4)
L (i=5,6)

®

®

(10)

Similarly, X obtained by nondimensionalizing x by L and y,z obtained by nondimensionalizing y and z by B are used in the

positional variables.

It is known that the asymptotic value of the Froude-Krylov force in the long wave length region corresponds to restoring

force, and the consistency between the two influences the asymptotic value of motion . Here, the exact value of the Froude-

Krylov force will be presented in order to evaluate the asymptotic value in the long wave length region calculated by the

simplified formulae. The following expressions are obtained by substituting the velocity potential of the incident wave shown

in Eq. (3) into Eq. (4) and performing a Maclaurin expansion for £, and applying Gauss’s divergence theorem to a scalar field

(hereinafter referred to as the Gauss gradient theorem) .

_ _dc
EFK = ik,Tb+ 0(k?)

Ef¥ = ¢, — ik %,C,, — kdC, + O (k?)

___dc, )
EgK = lle_zGML — Xfcw + O(kz)

_ _ dc
EFK = ikw?b +0(k?)

_ kik
FK — L;B‘; (x* —y®)dv + 0(k*)
Ve
_ _ dc
EFK = —ika—szM +0(k?)

(11

(12)

(13)

(14)

(15)

(16)

Where, 0(k™) is Landau’s symbol, y is the displacement region and k;, k,, are the nondimensional wave numbers in the

ship longitudinal and transverse directions, defined respectively as follows:

k, = kLcos B ,k,, = kBsinf

In the deformation of Eqs. (12) and (13), the following definition of the longitudinal center of floatation LCF is used.

amn
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bulk carriers, oil tankers, ore carriers, general cargo carriers, LNG carriers, LPG carriers, container ships, wood chip carriers,
car carriers, RO-RO (roll-on/roll-off) ships, refrigerated cargo carriers (reefers) and cement carriers, and covered a wide range
of L, Cy, Cs, B/L and B/2d, as shown in Fig. 2.

The wave conditions used in the comparison with the formulae in this paper included wave directions from £ = 90° (beam
sea) to 180° (head sea) in increments of 30°. For the wave length, wave length/ship length ratios /L of 0.5, 0.7, 1.0 and 1.5
were assumed. Where roll is concerned, estimation for a longer wave length region is important in some cases, but a numerical
comparison was not carried out here because the asymptotic value for long wave lengths is evaluated separately by mathematical
formulae. As mentioned above, the wave directions are limited to 5= 90° to 180°. However, because the real part and imaginary
part of the Froude-Krylov force acting on a bilaterally-symmetrical ship are symmetrical or antisymmetrial with respect to the
wave direction, this range is neither excessive nor inadequate for verification of the real and imaginary parts. Here, it should

also be noted that the Froude-Krylov force does not depend on the ship speed because the calculations are based on Eq. (4).
3. DEVELOPMENT OF SIMPLIFIED FORMULAE FOR FROUDE-KRYLOV FORCE

3.1 Basic Policy of Development

Because the Froude-Krylov force is the integral of the ship surface for a known scalar field, the key to the development of
simplified formulae is “how to approximate the ship hull-form.” Since the purpose of this research is to express the Froude-
Krylov force by an elementary function in which the variables are limited to only the main ship parameters and wave conditions,
ship hull-form is approximated by a function that can be integrated analytically so that it is determined uniquely by the main
ship parameters. As described detailly in the following sections, different hull-forms were selected for each mode of motion so
that the formulae are simple and rational as the evaluation of the integrated value. In particular, the hull-form is decided with
care so that the asymptotic value in the long wave length region either coincides with or is a good approximation of the result
given by the exact equation shown in section 2.3. Furthermore, for the ship surface integral, the section Froude-Krylov force
fFX(%) is defined and is then integrated in the ship longitudinal direction, and the integrand is simplified appropriately in this
process. For example, the Smith correction factor (e_kd’(’z): where d’(x) is the section draft) appears in the section Froude-
Krylov force, but because integration is difficult or impossible when treating its longitudinal distribution, the integrand is
simplified by replacing the section draft d'(x) with the constant d, (hereinafter referred to as “equivalent draft™) so that the
integrals are equivalent.
3.2 Surge

As the point of departure of simplified methods for calculating EFX, the following expression, in which the Gauss gradient

theorem is applied to Eq. (4), is often used.

— 1 a(po
Eff = —— | —adv
< LB}, 0x
(¥ . dydz) )
— lklf e tkix f ekz ikysin dx
%a () LB

Where, Ay (%) is the transverse section below the waterline. EfX is normally calculated based on Eq. (21) in strip method
programs, which do not use n, in calculations of hydrodynamic forces. The integral on Ay (X) is solved by direct integration,
or solved more simply by selecting a represented point of the wave particle velocity of the incident wave ¥ 19, Here, EFX is
obtained analytically after approximating the section as a rectangle. Assuming the section geometry as rectangle with breadth

B'(x) and depth d’(x). the integral on Ay (X) can be expressed as follows:

_ ,—kd'(x) k. B'(x
f gkz—ikysinp dydz = 1-e _2 sin kB () (22)
Ap(%) LB JeL e 2

Where, B'(X) = B’(X)/B. Substituting Eq. (22) into Eq. (21), Ef¥ is approximated as shown in Eq. (23).
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EFK = (1 — e7kde) _isinE—W fa f fFe“'kle’(f)di (23)
ky 2 )kL)g,

In order to simplify the integral in the approximation in Eq. (23), the following approximation is assumed:

k,B'(X) _ k
sian() =~ B'(X) sin7w (24)

kd' g replaced with the equivalent draft d. and removed from

Furthermore, the draft d°(x) in the Smith correction factor e~
the integrand. Here, since it is considered possible to approximate the projected plane of the ship’s shape below the waterline
on the y-z plane as the rectangle B x dC,, it is assumed that d, = dC,,. The distribution of B'(X) is assumed by a trapezoidal

distribution of an area C, with symmetry in the longitudinal direction, centering on the longitudinal center of buoyancy LCB.

1 for |x|=C,—0.5

B'(x) =4{ 05— |x
B'(x) 05— Ix| for C,—0.5<|%|<05 @
1-¢,

The area of B'(X) is set to Cp in order to the nondimensional displacement is correspond to Cj (= C,Cy,). Substituting the

above into Eq. (23), the following proposed formula is obtained.

_ 2k 2 Cyk 2 1-C,)k
EFK = (1 — e*dCm) [ —sin—= | [ — sin —2— = sin( p) L (26)
kw2 )\kL™ 2 (1 -,k 2

If the proposed formula shown in Eq. (26) is expanded for £, agreement of the asymptotic value in its long wave length region
with the exact value given by Eq. (11) can be confirmed.

Figure 3 shows the comparison of Ef¥ by the developed formula shown in Eq. (26) and the numerical calculations for the
actual ships shown in section 2.4. From Fig. 3, it can be understood that S[EF¥] has satisfactory accuracy for all ships and
wave conditions. Regarding R[EFX], in the calculations, this value becomes 0 by symmetric domain integration of odd
functions because a anterior-posterior symmetric hull-form was assumed. In comparison with this, the value for the actual ships
is at most about R[EF¥] = 0.02, confirming that the influence of the anterior-posterior asymmetry of the hull-form can be
neglected.

Since the midship section area coefficient of almost all general merchant ships is in the range of C,, > 0.96, there is virtually
no reduction in accuracy in many cases even if C,, = 1 is assumed in the calculation. However, if B’(X) is not considered as
trapezoidal as in Eq. (25), but is approximated by a rectangular distribution of the area Cp, ETX is represented by an equation
which does not contain the expression shown in the curly brackets ({}) on the right side of Eq. (26). and in this case, estimation
accuracy decreased remarkably in the short wave length region. Because », has a value mainly in the vicinity of the ship bow
and stern, the importance of the approximation of the shapes of the bow and stern is higher than that of other hydrodynamic
forces. Therefore, a highly accurate formula was obtained by assuming that the distribution of breadth in the ship longitudinal
direction is a trapezoid close to that of the actual hull-form (see Table 1).

3.3 Heave and Pitch
When the transverse sectional geometry of the hull is considered to be a rectangle with breadth B'(x) and depth d’(x), the

section Froude-Krylov force in the z direction fF¥(%) is expressed by the following Eq. (27):

f:fK(f) = {EisinkaT(x_)} e_kdl(f)—iilf @n
w
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By substituting Eq. (27) into Eq. (7), performing an approximation of Eq. (24), and removing the Smith correction factor

from the integrant by using the equivalent draft d,, EZX and EIX can be expressed as follows:

EFK ~ p=kde 2 EW " - (VA7
3 e 7_sin>- e B'(x)dx (28)
w X,
_ 2 k) [*F P
EFK = g=kde E_SinT f_ —xXe "MTB'(X)dx (29)
w X

Here, the equivalent draft d, is assumed as average draft, i.e. ds = dCyp. Since Ef¥X and EF¥ are integrals with respect to 7.,
it is inferred that they are deeply related the shape of the projection plane of the hull-form in the z direction, that is, the shape of
the waterline plane. Based on this idea, B'(%) is considered to be equivalent to the waterline breadth Ew(f). Assuming a

rectangular distribution of the area C,, with its center at LCG,

= 1 for |x—x:| <C,/2
B'(%) = { T w
® 0 otherwise (30)
In case the above is used, the integrals of Eqs. (28) and (29) are as follows:
oo 2o (2 Cuk
f e RIZR'()dx = e tKV¥f (-_—sin — l) (31)
z k; 2
F o ze 1((2 Cwk Cwk
f —xe TR (X)dx = ie”"f —{| =+ 2ix; sin—- — ¢, cos—2- (32)
= ki (\k; 2 2

The expression e KITf on the right side of Eqs. (31) and (32) is the phase difference due to the fact that the center of action
of the Froude-Krylov force is the LCF, while the reference phase of the incident wave is defined by the center gravity of the
ship’s hull. On the other hand, the X in the parentheses that can be seen on the right side of Eq. (32) is the lever of the center
of action of the Froude-Krylov force and center of gravity owing to the fact that EfX is defined as the moment around the
center of gravity.

The above-mentioned equations are derived as a result of regarding the hull as a “box-shaped vessel with dimensions of LC,,
x B x dC,, with its center at LCE.” This approximation seems reasonable in the case of beam sea because the incident wave
profile is uniform in the ship’s longitudinal direction, i.e., e ¥ = 1. However, in the case of head sea or following sea, the
wave profile e~thx changes in the longitudinal direction in the short wave length region and it is not reasonable to approximate
the hull-form as a box-shape. In order to water plane in the short wave length region of longitudinal waves and the influence of
the fineness of the ship under waterline without sacrificing the simplicity of the formula, k; in the equation is replaced with

the following k;:
El’ — Cb—o.lslzl (33)

This correction was applied to the ship longitudinal nondimensional wave number k; to change the value under a condition
of longitudinal waves in the short wave length region, and C, was used in the correction to correct both fineness at the water
plane (Cy,) and fineness below the water plane (C,p) by Cb = C,,Cp. The exponent —0.15 was decided to obtain high agreement,
based on the results for the actual ships.

From the foregoing discussion, the following equations are proposed as the simplified formulae of the Froude-Krylov forces

for heave and pitch.

—100—



Development of Simplified Formula for Froude-Krylov Force
of 6-DOFs Acting on Monohull Ship

_ o 2 ky\(2 . Ck;

EFK = g thixfkdCyp (Esin?w) (E—l,sin “é l) (34)

_ o 2 ky,\1(/2 Cyki Cyki

EFK — je~ta%f kG ( —sin— )| —{( = + 2i%, | sin— L ¢, cos— (35)
L2 )R\ z 2

In these formulae, k; is used instead of k; is used in e ~I¥f This is based on the consideration that EX should achieve
its maximum (or minimum) value at the instant when the crest (or trough) of the incident wave reaches the position of the LCF.

The comparison of the results of the developed formulae shown in (34) and (35) and the values obtained by the numerical
calculations are shown in Fig. 4 and Fig. 5. and confirm that the formulae have satisfactory practical accuracy for all ship types
and wave conditions. A good correlation can also be seen for S[EFX] and R[ELX], which are caused by the anterior-posterior
asymmetry of the hull-form. This means that it is appropriate to regard the center of action of Froude-Krylov force in the z
direction as being located at the LCF.

Regarding the amplitude in Egs. (34) and (35), because Fig. 2 showed that the value of X; is small, being about £0.05, the

terms for the squares of X, are neglected, and the expressions are rewritten as shown below.

_ 2 kyll2 | Cuki
|EEK| = e+ EsinTW| ERL 36)
_ 2 kyll1/2  C,k} Cuk;
|EFK| = e~kdCop [ gin - _—,(_—,sin *l_¢, cos—= l)| (37)
w 2 kl kl 2 -

In other words, X, is mainly used in phase calculations, and its influence on amplitude can be neglected. In the above
equations, agreement with the formulae according to Jensen et al. can be confirmed if k,, = 0 and C,, = C, = 1 are assumed.
Although the complexity of the numerical expressions of the proposed formulae is virtually unchanged from that of Jensen’s
formulae, these are higher-order formulae from the viewpoint that the effects of the ship hull-form parameters C; and C,, are
given proper consideration, and phase information can be clearly obtained by x;.

Agreement of the asymptotic value of the proposed formula (34) for heave with the exact equation (12) can be confirmed.

However, the asymptotic value of formula (35) for pitch in the long wave length region is as follows:

4 e
ESX ~ k5 — % Cy as k-0 (38)

Comparing the right side of (38) with the exact equation (13), it can be understood that the quantity which is equivalent to

the nondimensional restoring force coefficient of pitch, dC,/L? X GM,. corresponds to the expression shown in (39).

dc,

—0.15 C‘?’
?GML Aard Cb T —

T (39)
The right side of (39) is an expression which was obtained by multiplying the nondimensional restoring force coefficient of
pitch €3/12 when B, (¥) is approximated by a rectangular distribution (right side of Eq. (30)) by the correction factor C~
915 Tn spite of the fact that this expression is different from the left side of Eq. (39). it is not a poor approximation, and as can
be confirmed from Fig. 5, its accuracy presents no problems for practical application in the long wave length region. Although
we also studied approximation of B'(X) by a trapezoidal distribution, rather than by a rectangular distribution as in Eq. (30).
there was no large improvement in accuracy that would justify the increased complexity of the formula. As a result, formulae
(34) and (35) in which an approximation by a rectangular distribution was corrected by (33), were adopted as the proposed

formulae in this research, as these formulae provide both simplicity and accuracy.

—101—
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3.4 Sway and Yaw

When the transverse section geometry of the hull is considered as a rectangle with breadth B’(x) and depth d’(x), the

K

section Froude-Krylov force in the y direction fF¥(x) is as follows:

X =if1 - e—kd'(f)}{ z ka’(f)}e_mlf .

ﬁsm 2

By substituting Eq. (40) into Eq. (7). performing an approximation of Eq. (24) and removing the Smith correction factor from

the integrant by using the equivalent draft d,, Ef¥ and EFX are expressed as shown below.

_ 2 ky\ [(F oo

ESK = (1 — e7kde) EsinT LA e MXB'(X)dx (41)

_ 2k [FF_ - =

EFK > i(1 — e7*de) | —sin— f xXe "KI*B'(x)dx (42)
KB 2 ),

Although the definitional equation of fF¥(x) shown in Eq. (6) is based on the surface integral, it can be replaced by the
surface integral on the transverse section of @o by applying the Gauss gradient theorem to that equation. Based on this fact, the
equivalent draft is approximated as d. = dC,y, considering the influence of thinness below the waterline. However, for EE¥, this
is given as d, = dC%,;, considering the asymptotic value in the long wave length region, as described at the end of this section.

The breadth B'(X) is assumed to be a rectangular distribution of the area C,, with LCB as its center:

51— 1 for |x| =C,/2
BI — w
® { 0 otherwise (43)
Finally, the following simplified formulae are obtained by substituting Eq. (43) into Eqs. (41) and (42).
d 2 k,\[(2 . Gk
FK _ i1 _ p—kdCppy [ 2 Kw [ 2 . Cwka
EEf=i(1—-e P) (kB sin— )(kz sin— ) (44)
_ 2 ky\1(2 _ Cuk Cwk
EFf=(1- e"‘dcgp) (ﬁsinT‘”)E—l(E—lsin ‘; L ¢, cos “;2 l) (45)

The comparison of the results by the developed formulae shown as Eq. (44) and Eq. (45) with the values obtained by the
numerical calculations are shown in Fig. 6 and Fig. 7, respectively. It can be understood that the proposed formulae have
satisfactory accuracy for all ship types and wave conditions. R[EZX] and J[E£¥X] are 0 by the proposed formulae and can also
be considered as substantially 0 in the numerical calculations, as the calculated values were at most about R[EF¥] =0.01 and
S[EFX] =0.002. This means that it is appropriate to consider the center of action of Froude-Krylov force in the y direction is at
the LCB. The proposed formulae consider the hull-form to be box-shaped with the dimensions LGy, x B x dCp, which is the
same as for EfX and EfX. Section 3.3 explained that the accuracy of the z direction Froude-Krylov force decreased in the
short wave length region of longitudinal waves if the hull form is considered as box-shaped. On the contrary, because the force
in the y direction in longitudinal waves is inherently 0, the formulae for Ef¥ and EF¥ possess sufficient accuracy for practical
application even without the correction like Eq. (33).

If the simplified formula for sway shown as Eq. (44) is expanded by £, agreement of its asymptotic value in the long wave
length range with the exact value given by Eq. (14) can be confirmed. However, when the simplified formula for yaw in Eq.

(45) is expanded to the second order of £, it is expressed as follows:

—102—
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_ dC,C2

EFK ~ Ewk,E 12 as k—0 (46)

Comparing the right sides of the above Eq. (46) and the exact equation Eq. (15), the following correspondence can be

observed:

1 c,C?
L3Bdf GF=yHdV o sz (47
Ve

The equivalent draft was assumed to be d, =d C,fp for EfX as a result of considering the correspondence shown in Eq.
(47). That is, the right side of Eq. (47) derived by assuming d, = dCfp is a good approximation of the integral of the left side.
If the equivalent draft d, is assumed to be d, = dC,p. i.e., the same as for EZ¥, the right side of (47) becomes C3C;,/12, and
its approximation accuracy will decrease. In fact, it was found that the overall estimation accuracy of EfX when the equivalent
draft was assumed to be d C,Ep was higher than when dC,,, was assumed.

3.5 Roll

First, the section Froude-Krylov moment around the x-axis (waterline height) and the Froude-Krylov moment are written as
fEK(%) and ELK, respectively, and from the definitional equation (5) of 74, the relationship of the values fF¥ (%) and EI¥

around the center of gravity is as follows:

fFR @) = fi¥ @ + 275 () )
Ef¥ = Ef¥ + Z,E5¢

In the following, the moments f7X (%) and EIX around the x-axis will be considered.

When the section shape is considered as a rectangle with breadth B’(x) and depth d’(x). the section Froude-Krylov moment

fEK(x) is as shown by the following equation.

ﬁlg{(f) — je—tkI% {isin EWE'(J?)} [1 —{1+ kd’(f)}e_kd,(f)]

KB 2 KB 49)
- ie—iﬁlf—kd’(x-) _i' _i' in ka (x) _ E’(f) cos kWB (x)
w w 2

The first term on the right side is the contribution from the left and right side walls, and the second term is the contribution
from the bottom surface. Although Eq. (49) is the similar to the simplified estimation formula for the effective wave slope
coefficient proposed by Umeda et al. !V. However, in the estimation method for EfX according to Umeda et al., the information
for d'(x) and B’(x) is given for each transverse section, and numerical integration of ff¥(x) is required. Thus, while the
estimation accuracy of the coefficient proposed by Umeda et al. is high, the number of parameters considered necessary is also
correspondingly large.

Here, Eq. (49) is substituted into Eq. (7), the approximation shown as Eq. (24) is applied to the first term on the right side of
Eq. (49) and the following approximation is applied to the second term.

— B’ cos

2 k,B - kB __3(2 _k k
— sin—% ¥~ 3< i W) (50)
kw

The approximation in Eq. (50) is based on the fact that the leading term when the left side is expanded by k,, is proportional
to B'°. Furthermore, because the first and second terms on the right side of (49) are integrals related to n, and n,, respectively,
different shape approximations should be performed by the two. These are distinguished by using the different equivalent drafts

d.; and d,, and breadths Bj(X) and Bj(X), respectively. Based on the above, ELX is expressed as shown in Eq. (51):
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_ 1— (14 kdy)e™ ) (2 k,\ [FF_
Efg%i{ ( kB‘”)e }(ﬁsin%) f Bi()e " i¥dx

X,
1/2 k AE TF o (51)
oMo —( Zsint - cost ) [ T (By0)e Rax
ke \ Ky 2 2 ) )z,

Continuing, let us consider the approximate value of the integrals of the right side of Eq. (51). Because the first term on the
right side of Eq. (51), i.e., the term associated with the side walls, is strong influenced by the draft as the lever of the moment,

let d.; =d.Assuming that B](X) is a rectangle with an area Cj centered on LCB:

1 for |x| =Cy/2

0 otherwise (2)

Bi(®) ={
LCB was assumed as the center because it was inferred that this term is the same as EXX and ELX, as it is an integral related

to ny, and the area was assumed to be Cj, so that the integral value of dyBj(x) is identical to the displacement volume. Under

these assumptions, the first term on the right side of Eq. (51) can be expressed as follows:

(Firet term) = i 1—(A+kde™ ) (2 _k,\[(2 . Gk
irst term) =i B ) I?,Sln > (53)

Next, the second term on the right side of Eq. (51), that is, the term associated with the bottom surface, is an integral related
to n.. Therefore, as in the Froude-Krylov forces of heave and pitch, d,, = dC,,, and Bj(x) is considered to be equivalent to

the waterline breadth B),(X) and is considered as having a trapezoidal distribution with an area of C,, centered on LCF:

1 for |x—x|<¢(,—05
Bj(x) ={ 05—|% >4
(0= 0511 o Cy—05<|¥—%| <05 G

1-C,

—iRx

If the geometry of Eq. (54) is adopted, the expression of the integral value {Bj}(¥)}3e will be complex. Therefore,
simplification is performed without reducing estimation accuracy in beam sea using the fact that the ship longitudinal
distribution of the incident wave front expressed by e KiT js ¢~KI¥ =1 in a beam sea. That is, in a beam sea, the integral

value of {B}(¥)Pe ¥ using Eq. (54) with a trapezoidal distribution can be expressed simply, as follows:

*F 3C, —1
f_ {B;(x)}3dx = — (55)

Based on this fact, if the distribution of Bj(x) can be considered as a “rectangular distribution with an area of (3C,, — 1) /2
centered on LCF,” complexification of the integral can be avoided while maintaining accuracy in beam seas. In this case, the

integral in the second term on the right side of Eq. (51) can be expressed as shown in Eq. (56).

T wse 2 . (3C,— Dk
J- {B5(X)}Pe i¥dx = e'”"’xf_—sinM (56)
¢ k 4
X l
As a result, the second term on the right side of Eq. (51) becomes the following:
(Second term) = et kdGyy _isink—w - cosk—w _isinM (57)
ky \ Ky 2 2 )k 4
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Development of Simplified Formula for Froude-Krylov Force
of 6-DOFs Acting on Monohull Ship

Finally, the following simplified formula was obtained as the Froude-Krylov moment of roll around the center of gravity:

_ 1-(1+kd)e ™) /2  k,)\/2 . Ck
FK . . w .
B = l{ kB kB "2 )\K " 2

o 1/2 k ky\ (2 3¢y — Dk _
—ie_’kle_de"PE— (E—siHTw — cos TW) {E_ sin%} + Zg EEX
w w l

(58)

Figure 8 shows the comparison with the numerical calculation values for the developed simplified formula shown in Eq. (58).
Although a slight reduction in accuracy can be seen in the short wave length region, it can be understood that this formula has
sufficient practical accuracy as a simplified formula.

When the terms on the right side of the proposed formula in Eq. (58) are expanded by £, the results for the respective terms

asymptotically approach the following values:

. - dCy( d
(First term) ~ — Lkw?{— 2} as k-0 (59)
_ dc, (B2 (3¢, — 1) 60
(Second term) ~ — lka{d—CbT as k—0 (60)
— dC
(Third term) ~ — ika—z”{—zG} as k—0 (61)

When compared with the exact value given by Eq. (16), it can be seen that the sum of the contents enclosed in the curly
brackets in Eqs. (59) to (61) is in agreement with GM, and in order from the top, these contents correspond to zg, BM and — z¢
on the right side of Eq. (20). Because shape of the side walls is approximated as box-shape in the first item (i.e., Eq. (59)), zg =
—d/2. In the second item (Eq. (60)). from Eqs. (20) and (55). the waterline breadth B,,(¥) becomes BM when approximated
by a trapezoidal distribution. In formulation of the second term, if the distribution of Bj(x) is simply approximated by a
rectangle having area C,,, the result will diverge from the actual value of BM, resulting in a decrease in accuracy in the long
wave length region. Accompanying this, a decrease in accuracy in the short wave length region was also confirmed. Although
the right side of Eq. (55) was used in the area of the distribution of B}(X) to maintain accuracy in beam seas, this also leads to
improved estimation accuracy under all wave conditions.

3.6 Formulae of Pitch/Roll Moment Using Longitudinal/Transverse Metacentric Height

As explained previously, Eq. (35) for the pitch moment EFX shown in the earlier section 3.3 and Eq. (58) for the roll moment
EF¥ in section 3.5 asymptotically approach values approximating the restoring force coefficient, which is the exact asymptotic
value in the long wave length region. In contrast, if it is acceptable to use the restoring force coefficient of a ship, that is, the
longitudinal/transverse metacentric heights, in the formula, formulae for Ef¥ and Ef¥ which take the exact asymptotic values
can be expressed. Therefore, this section describes the expression of EfX and EfX using the longitudinal and transverse
metacentric heights, and compares the results with those of formulae shown in Eq. (35) and Eq. (58), which were already
developed.

First, let us consider the equation for EF¥. In formula in Eq. (35) for EEX, the C,k; dependent functions are transformed

as shown below:

— — _ 2 — —
1(2 . Cuk; Cuk]) - 3¢, 2 2 Cyky Cuk;
E_{{E_{Sln >~ Cy, cos > (= k; 12 3 = E{Cw sin———cos— (62)

From Eq. (39), the underlined portion on the right side is a quantity which corresponds to the nondimensional restoring force
coefficient of pitch dC,/L? X GM,,. Therefore, the following expression of EfX can be obtained by replacing this with
dC b / LZ X GML:
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_ o 2 ky\ (.- dG, N 2% Cuk]
EFK = giRi%f—kdCop <Esm7w> {lkl?GMLf(kal) —E—{sm“’T’} (63)
Here, f{x) is the following function, which asymptotically approaches 1 as x — 0.
12 /2  «x X
= — | —sin— — -] = 2
f(x) = (x sinz — cos 2) 1+0(x?) (64)

When the underlined portion in Eq. (62) is replaced with dC,/L? X GMy, Eq. (63) asymptotically approaches the exact value
in Eq. (13) in the long wave length region, assuming the correct value of GMy is used. Moreover, if Xy in Eq. (63) is neglected,
it is possible to obtain a composition with an easily-understood physical meaning expressed by the product of the Smith
correction factor, the wave length dependent function f (Cwl_c,')* which approaches 1 in the long wave length region, and the
correct asymptotic value k,;dC,/L? X GMy. A slight improvement in accuracy was confirmed with Eq. (63) in comparison with
Eq. (35). not only in the long wave length region, but also in the short wave length region. Accordingly, use of Eq. (63) is
recommended in cases where the longitudinal metacentric height GMy is known.

Next, let us consider the formula for EfX. In formula shown in Eq. (58) for Ef¥, when the formula is simplified on the

precondition of # =7 /2, that is, in beam sea, and £ is taken to the second term by a Maclaurin expansion, EfX is expressed as

follows:
. 2
zrx _ _ 1kdCy _ﬁ( _2 )_ _ B 3G 1. 3) & _ippo—kdCy, C0
Ef 5 |2 1-zkd zg(1 kdc,,,,)+dcb o (1—kdCy,)t + 0(k®) = —ikBe w—7GM  (63)

Approximation on the extreme right side of Eq. (65) is a result which considers the correspondence of the sum of the
underlined portion of Eq. (65) to GM, as explained in section 3.5, and e ¥ ~ 1 — kdC,,. Although this equation was
simplified by limiting its application to beam seas, in order to treat oblique waves, the following Eq. (66) was obtained by
replacing kB in Eq. (65) with k,, based on the correspondence with Eq. (16), and then multiplying by a correction factor by
the longitudinal nondimensional wave number (2/C,k;)sin(Cyk;/2) (value when the water plane is approximated as a

rectangle with dimensions of C,L x B).

. A 2 Cyk;\ dC,
EfX = —ik,, e *Cvw — si Ll —2oMm
A ik,e T, sin > > (66)

The equation is very simple in comparison with Eq. (58), in which GM is not used, and is also an extremely clear equation in
physical terms, as it is the product of the restoring force coefficient dC,/B? X GM and the wave slope of the sub-surface
k,,e ¥4%p_The accuracy of Eq. (66) when GM is known decreases slightly from that of Eq. (58) (Fig. 8) in the wave length
range shorter than A/L = 0.7, as shown in Fig. 9, but nevertheless is generally satisfactory. Furthermore, unlike Eq. (58), phase
information cannot be obtained with Eq. (66), as its real part is 0. However, in comparison with Eq. (58), the asymptotic value
of Eq. (66) in the long wave length region is exact, and Eq. (66) is also superior from the viewpoints of simplicity and a
composition consisting of easy-to-understand physical quantities. Moreover, since the transverse metacentric height GM is a

very basic quantity and is also known in many cases, Eq. (66) is considered to be amply practical as a simplified formula.

—106—






ClassNK Technical Journal No.3.2021 (1)

<)

It is known that the asymptotic value of the Froude-Krylov force in the long wave length region corresponds to the restoring
force coefficient. The asymptotic values of the proposed formulae approach the exact values for surge, sway and heave
forces, and approach the values of the restoring force coefficient which is approximated by the main parameters for the
moments of roll, pitch and yaw. Furthermore, the above-mentioned formulae for the moments of pitch and roll using the
longitudinal or transverse metacentric heights approach the exact values.

Appropriate consideration is given to the phase difference with respect to the incident wave by assuming LCB as ship

center position in terms related to n, and »,, and assuming LCF as ship center position in terms related to ..

Finally, in concluding this paper, the features and evaluation of the developed simplified formulae and the results produced

thereby may be summarized as follows.

)

it)

iii)

The proposed formulae have high estimation accuracy for 77 actual ships under two different loading conditions (full load,
ballast), without limitation as to the ship type or size, under all wave direction and wave length conditions. In particular,
the accuracy of the formulae increases in the longer wave length region. Because the Froude-Krylov force does not depend
on the ship speed when it is based on a uniform flow approximation, these formulae can be applied to substantially all wave
conditions within the range of linear theory.

Because the necessary requirements for calculations are limited to only 8 main parameters of the ship (9 in case the
longitudinal/transverse metacentric heights are used), rational estimation of the Froude-Krylov force is possible even
without detailed information concerning the ship’s hull. This is particularly useful in evaluation of ship motility in the
initial stage of design. Among the main parameters, xris not a general main parameter and is more difficult to obtain than
the other items, but since it is a parameter that mainly influences the phase, information on xris not necessary when the
aim is to investigate amplitude.

To the best of the authors’ knowledge, there are no past examples in which estimation formulae for the Froude-Krylov
force expressed only by the main parameters of a ship were obtained by a theoretical approach. The research by Jensen et
al. ¥ for a similar purpose presented formulae for the Froude-Krylov force for a box-shaped ship, and corrected the formulae
by using a fineness coefficient. In contrast, in the formulae proposed here, the complexity of the numerical expressions is
essentially unchanged from those proposed by Jensen et al., but the proposed formulae are sophisticated formulae in that
the influence of the ship’s hull-form parameters is considered appropriately based on a geometrical consideration, and
phase information can be clearly obtained. Although simplified estimation formulae which are used in stability standards
exist for the Froude-Krylov moment of roll !V, information on the geometry of each transverse section of the hull is required.
In contrast, reasonable estimation is possible by the proposed formulae using only the main parameters.

As mentioned in the Introduction, the simplified formulae for the Froude-Krylov force have an especially high value for
simplicity in estimating roll and surge. Since these are also main components among the hydrodynamic forces for other
modes of motion, it is expected that the formulae developed in this research can be used effectively in simple estimations
of ship motion in waves. For example, because a dominant parameter that does not exist in the motion and acceleration
provisions of CSR was discovered by proposed formulae, it is expected that use of the formulae will lead to improvement

of the accuracy and general applicability of the formulae.
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